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ABSTRACT

Large-scale thermoplastic polymer extrusion-based additive manufacturing
(AM) has been used to fabricate precast concrete formworks. There are some
limitations inherent to the large-scale AM process that need to be overcome to
design complex, multipart additively manufactured formworks to be used for
precast concrete. This research work uses a large-scale polymer composite AM
process to manufacture two-part formworks. Postprocessing was used to repair
imperfections, create smooth casting surfaces, achieve precise dimensional toler-
ance, and incorporate assembly mechanisms for multipart formwork. Two biode-
gradable polymer composites (wood-fiber polylactic acid and wood-fiber
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amorphous polylactic acid) and a conventional polymer composite (carbon fiber
acrylonitrile butadiene styrene) were selected to manufacture four sets of two-
part formwork. Design details, including the cellular infill pattern, continuous
toolpath, and layer time selection, are presented. Postprocessing and repairs per-
formed on the manufactured formworks to get the required dimensional toler-
ance and surface smoothness are discussed.

Keywords

large-scale additive manufacturing, formworks, precast concrete, PLA, ABS,

postprocessing

Introduction
The extrusion-based additive manufacturing technology of thermoplastic polymers
has advanced in recent years. The major advancements include scaling up to large
build volumes and the use of reinforcement. The build envelope of polymer
extrusion-based additive manufacturing of the thermoplastic polymer ranges from
a few hundred millimeters for a small desktop 3D printer to several meters for
large-scale machines.1–4

Different materials, including concrete, metal, clay, and fiber-reinforced poly-
mers, have been used for large-scale 3D printing for construction applications.
Buchanan and Gardner5 reviewed the use of metal 3D printing in construction.
Zhang et al.6 reviewed the application of 3D-printed concrete for construc-
tion applications. 3D-printed concrete can offer geometric freedom, rapid auto-
mated construction, cost savings, formwork-less printing, and low waste. Jipa and
Dillenburger7 reviewed the state of the art, opportunities, challenges, and applica-
tions of 3D-printed formworks. Thermoplastic polymer extrusion-based additive
manufacturing of formworks also offers geometric freedom, cost savings, and low
waste via recycling. Anderson8 studied the recycling of 3D-printed polylactic acid
(PLA) at a small scale and found small significant changes in tensile strength but no
significant change in the stiffness of recycled PLA. Lanzotti et al.9 compared the
bending strength of 3D-printed virgin PLA and PLA recycled for multiple cycles
and found recycling viable. Gomes et al.10 reviewed different recycling studies on
3D-printed polymers and discussed several methods to mitigate the reduction in
mechanical properties. Additionally, thermoplastic polymer extrusion-based addi-
tive manufacturing of formworks allows the continued use of existing technology
and infrastructure for concrete casting operations. This study uses thermoplastic
polymer composites for manufacturing 3D-printed formworks.

Short carbon fiber, short glass fiber, and natural fibers are the most common
fiber reinforcements that have been introduced to feedstock polymers.11 Ajinjeru
et al.12 studied the influence of carbon fiber reinforcement on the dynamic rheologi-
cal properties of polyetherimide used for large-scale extrusion-based additive
manufacturing. Duty et al.13 discussed the effect of the reinforcing fibers on the vis-
cosity of the feedstock and the impact of reinforcing fibers on the extrusion
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pressure.13 Pappas et al.14 carried out a comparative study of pellet-based extrusion
deposition of short, long, and continuous fiber-reinforced polymer composites for
large-scale extrusion-based additive manufacturing. The study found that the poly-
mers with longer fibers exhibited better mechanical properties of the printed part,
although the longer fibers resulted in lower impregnation with the polymer and
worse wetting. Love et al.15 found that the addition of carbon fiber to the polymer
in additive manufacturing causes an increase in strength and stiffness, as well as a
reduction in distortion and warping. Other research work also found a similar
increase in the mechanical properties of the manufactured parts and a reduction in
the coefficient of thermal expansion as a consequence of adding carbon fibers to the
polymer feedstock.16

These advancements in large-scale extrusion-based additive manufacturing of
thermoplastic composites present a potential for manufacturing complex form-
works for casting precast concrete structures. The 3D-printed formworks can
shorten the process of prefabricating concrete while offering highly detailed surface
finishing and an expanded degree of geometric freedom.17 Combining 3D printing
with computer numerically controlled (CNC) machining can synergize the process
by complementing the advantages of additive manufacturing and postprocessing.18

Large-scale polymer extrusion-based additive manufacturing has been used for
a variety of applications, including tooling for automotives,19 automotive bodies,20

boat hull molds,21 transportation structures,22,23 and precast concrete form-
work.24,25 The advancements in large-scale extrusion-based additive manufacturing
of thermoplastic composites present a potential for manufacturing complex form-
works for casting precast concrete structures. The 3D-printed formworks can
shorten the process of prefabricating concrete and offer highly detailed surface fin-
ishing and an expanded degree of geometric freedom.17

3D-printed formworks have been used for manufacturing precast concrete
structures for architectural purposes. Roschli et al.24 used large-scale 3D-printed
short carbon fiber-reinforced acrylonitrile butadiene styrene (CF-ABS) formworks
for casting architectural concrete window panels. The 3D-printed formworks were
20 times more durable than traditional wooden formworks and therefore were sig-
nificantly more cost-effective based on a life-cycle analysis.

The cost of the 3D-printed formworks can be further reduced by using bio-
based environmentally friendly polymers. This study investigates the manufacturing
and postprocessing of 3D-printed biobased polymer composite formworks and
compares them with the conventional CF-ABS 3D-printed formworks.

Materials and Methods
The Ingersoll Masterprint large-format 3D printer was used for manufacturing the
formworks. This 3D printer has a build envelope of 18.2 m (60 ft.) in length, 6.70 m
(22 ft.) in width, and 3.05 m (10 ft.) in height. The extruder can deposit at a rate of
68 kg/h (150 lb/h). Figure 1 shows the Ingersoll Masterprint large-format 3D printer
in the Advanced Structures and Composites Center at the University of Maine.
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The formworks were designed to manufacture a precast concrete parking
garage wall system, Litewall, with a patented design from Unistress Corporation.
Figure 2 shows the Litewall system and the essential features required in the form-
works for casting the features present in the Litewall system. Figure 2A shows the
Unistress Litewall system in a parking garage wall structure. The formworks are
designed for casting the window openings with an embedded metallic mesh for
parking garage structures. The typical precast concrete wall structure is 10.0 m
(32.8 ft.) long, 6.0 m (19.7 ft. high), and 0.304 m (1.0 ft.) thick with seven openings
per wall. A two-part form assembly with bolted connections is required for each
opening to cast the concrete wall. The openings are 1.60 m (5 ft. 3 in.) high and
0.914 m (3 ft.) long. The manufactured formworks have some essential features
needed for casting the concrete wall. Figure 2B shows the essential features in the
bottom wall of the two-part formworks system. Three sides are sloped at 1/12,
and one side is sloped at 1/3. The sloped sides enable ease of demolding of the con-
crete part from the formwork. Notches need to be placed on the formworks for
embedding the metallic wire mesh.

Three different polymer composite materials were selected for manufacturing
the formworks.

Two sets of formworks were manufactured using WF-PLA (biobased material
system with conventional semicrystalline PLA polymer). Another set of formworks
was manufactured using WF-aPLA (biobased material system with a novel amor-
phous PLA polymer). The fourth set of formworks was manufactured using
CF-ABS (a conventional 3D-printing material system that has been used before for
precast concrete forms). Table 1 lists the mechanical properties provided by the
material suppliers for the feedstock materials used in the study.

FIG. 1 Ingersoll Masterprint large-format 3D printer.
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FIG. 2 Unistress Litewall system. (A) Unistress Litewall window screen system.

(B) Essential features for casting the Litewall system.

TABLE 1 Thermomechanical properties of feedstock materials

WF-PLA WF-aPLA CF-ABS

Reinforcement (% wt.) 20.0 20.0 20.0

Tensile strength along bead (MPa) 55.8 58.2 89.6

Tensile modulus along beads (GPa) 5.65 4.90 12.4

Flexural strength (MPa) 93.1 94.6 143

Flexural modulus (GPa) 5.31 4.46 12.1

Processing (melt) temperature (!C) 160–190 N/A 260–293
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A cellular design was adopted for the bottom formwork. The cellular structure
minimizes material usage and reduces print time. Figure 3 shows the 3D model of
the bottom formworks designed with a cellular structure for 3D printing. The
distance from the inner wall to the outer wall in the cellular structure is 0.210 m
(8.25 in.).

Surface models were used for the slicing process instead of the solid models.
The surface models allowed for more precise control of the deposition toolpath.
Using the surface model, a continuous toolpath was generated for the layers to min-
imize the seams. The toolpath has a single point for the start and the stop in each
layer. The 3D-printed parts were designed to be slightly oversized than the final
dimensions. The increased dimensions in the near-net-shape model compensate for
the shrinkage of the material during cooling and allow machining to create a
smooth concrete casting surface. The printing parameters used for different poly-
mer systems are listed in table 2.

CNC machining was carried out to generate the net shape with precise
dimensions and to create a smooth surface finish. CNC machining was also used
to cut out the notches on the bottom formworks for embedding the wire mesh
and to drill the holes for threaded inserts. The threaded inserts were placed on the
bottom formworks. The top formworks and the bottom formworks were assem-
bled using six hex bolts, four at the corners and two at the centers of the 1.60 m
(5 ft. 3 in.) sides.

FIG. 3 3D model for bottom formwork.
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Discussion of Results
The slightly oversized near-net-shape parts were 3D-printed using the three mate-
rial systems selected. Figure 4 shows the 3D-printed WF-PLA and WF-aPLA bot-
tom forms. Figure 4A shows the near-net-shape 3D-printed WF-PLA bottom
form. The printed forms had a single continuous toolpath per layer, minimizing
the number of seams that are formed at the start and end points of the extrusion
toolpath. The WF-PLA forms underwent significant shrinkage and warping dur-
ing 3D printing.

Figure 4B and C shows the warping of the 3D-printed WF-PLA forms at the cor-
ners. The 3D model used for slicing was oversized by 25.4 mm (1 in.) in height to
compensate for the warpage. However, the warpage was higher than expected and
reached up to 38.1 mm (1.50 in.) at one of the corners.

The 3D-printed WF-aPLA forms did not show any noticeable warpage of
the parts. However, at layers above half the height of the part, in regions of depo-
sition that were three or four bead widths thick, the collapse of the walls was
observed. Figure 4D and E shows the 3D-printed WF-aPLA bottom form. The bot-
tom form was checked for warping with I-beam level equipment, and no signifi-
cant warpage was observed in the form. The thicker walls retain heat longer
because the thick regions have a lower surface area to volume ratio. As the thicker
walls cool slower, they undergo higher viscous deformation due to the loads
from layers deposited above. Consequently, the layers in the region of the thick
walls collapsed. The phenomenon of layer collapse in extrusion-based addi-
tive manufacturing of polymer composites has been discussed by Duty et al.13 The
oversized near-net-shape CF-ABS forms were 3D-printed without any observable
issues.

The 3D-printed forms were machined to a smooth surface finish using
CNC machining. Notches were carved out for embedding the metallic mesh.

TABLE 2 Printing parameters for different polymer systems

Parameters Values

Bead width 19.1 mm (0.75 in.)

Bead thickness 5.08 mm (0.20 in.)

Extrusion rate

WF-PLA 25 kg/h (55 lb/h)

WF-aPLA 25 kg/h (55 lb/h)

CF-ABS 39 kg/h (85 lb/h)

Extrusion temperature

WF-PLA 207!C

WF-aPLA 210!C

CF-ABS 240!C
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The 3D-printed WF-PLA and WF-aPLA were repaired during postprocessing.
Figure 5 shows the repair process for the 3D-printed WF-PLA and WF-aPLA forms.
Figure 5A–D shows the process of repairing the warpage of the 3D-printed WF-PLA
forms. The 3D model for the bottom form was designed 2.54 mm (1 in.) taller than
the required final dimensions. After machining the bottom form, a cutout was
made at the corners where repair work was planned. Pliogrip two-part polyurethane
adhesive was applied to the freshly cut surface, and a polycarbonate (PC) sheet was
bonded to the 3D-printed part. The adhesive was allowed to cure for 2 h. The PC
sheet was trimmed to the final dimensions by CNC machining.

The 3D-printed WF-aPLA forms were also repaired. Figure 5E–H shows the
steps for repairing the WF-aPLA forms. The two major issues observed with the
3D-printed WF-aPLA forms were the collapse of the layers in the region with thick
walls and the interbead voids that were exposed after machining of the outer
surface.

FIG. 4 3D-printed WF-PLA and WF-aPLA bottom forms. (A) Near-net shape

3D-printed WF-PLA bottom form. (B) Warpage of bottom forms (WF-PLA).

(C) Warpage measurement (WF-PLA). (D) Bottom form with I-beam level

(WF-aPLA). (E) Collapse of thick walls (WF-aPLA).
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FIG. 5 Repairing WF-PLA and WF-aPLA bottom forms. (A) Cutout for placing the PC

sheet. (B) Polyurethane adhesive applied to the cutout. (C) PC sheet bonded

with the 3D-printed form. (D) PC sheet trimmed to final dimensions.

(E) Interbead voids exposed after machining. (F) Layer collapse and the

interbead void filled with molten WF-PLA. (G) Polyurethane adhesive

applied to the repaired surface. (H) Final machined surface.
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WF-aPLA bits produced during the CNC machining were melted using a heat
gun and applied to the damaged area. The repaired WF-aPLA was machined after
it was allowed to cool down for 1 h. Smaller voids that were not properly filled up
by molten WF-aPLA were plugged using a polyurethane thermoset polymer.

Threaded inserts were embedded into the bottom forms for assembling the
two-part formworks. Figure 6 shows the threaded insert in the bottom form and
the assembly using six hex bolts. Figure 6A shows the threaded insert embedded in
the bottom form. Figure 6B shows the top and bottom form assembled using the hex
bolt and the threaded insert. The embedded threaded inserts and hex bolts allow
for easy assembly and disassembly of the top and bottom forms.

Figure 7 shows the final 3D-printed formworks after postprocessing. Figure 7A

shows the CF-ABS and WF-PLA forms. Two sets of WF-PLA, one set of WF-aPLA,

FIG. 6 Threaded insert and assembly of the top and bottom forms. (A)Threaded insert

embedded in the bottom form. (B) Top and bottom form assembled using hex

bolts.

FIG. 7 Final 3D-printed formworks after postprocessing. (A) One set of CF-ABS and

two sets of WF-PLA forms. (B) WF-PLA form with embedded mesh.
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and one set of CF-ABS forms were manufactured using large-scale 3D printing and
postprocessing. Figure 7B shows the WF-PLA form with embedded mesh.

Conclusions
The following conclusions were drawn from the research work:

1. Large-scale 3D printing in combination with CNC machining can be effec-
tively used to manufacture relatively complex formworks for concrete cast-
ing operations.

2. The design of a continuous extrusion toolpath for the cellular infill pattern
is required to minimize the number of seams in the formwork.

3. The parts additively manufactured using WF-PLA bio-based polymer com-
posite exhibited excessive warping. The parts additively manufactured using
WF-aPLA biobased polymer composite underwent excessive deformation in
regions where more than two beads were laid adjacent to each other. The
postprocessing repair methods presented can correct these manufacturing
defects.

4. Parts manufactured using CF-ABS polymer had relatively fewer defects and
required minimal postprocessing for repairs.

5. Postprocessing is necessary to achieve the dimensional tolerance and surface
smoothness required for casting precast concrete structures.
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