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Abstract 
 

In this project, we develop non-contact sensing mechanism for health monitoring as well as the 

associated machine-learning based technique for decision making.  Currently available sensory 

systems for structural health monitoring are almost all based on transducers that are directly 

attached to or embedded in structures monitored.  As a result, they face with critical barriers, 

such as extremely high implementation cost in very large scale structures due to the large 

number of sensors needed and relatively high false alarm rate due to malfunction of sensors 

themselves.  The non-contact nature of the proposed sensing modality will cause paradigm shift: 

it leads to mobile sensory system that can monitor very large scale structures employing only a 

small number of sensors, and it allows us to increase considerably the confidence level of 

structural health monitoring.  In this research, concurrent breakthroughs in sensor synthesis and 

data analysis are pursued.  We (a) develop a new non-contact impedance-based sensing 

mechanism via two-way magneto-mechanical dynamic interaction that is enhanced by adaptive 

electrical circuitry integration, which facilitates the tunable high-frequency interrogation to 

disclose structural anomaly; and (b) formulate accurate and robust decision making strategies 

that that take full advantage of the new machine learning techniques. 
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Chapter 1: Introduction and Background 
 

1.1 Project Motivation 
In this research, we explore a new modality of non-contact active sensing that utilizes magneto-

mechanical coupling to facilitate unprecedented, fast inspection of infrastructure components such 

as railway tracks.  We further develop machine learning technique to rapidly process the data to 

realize decision making and fault classification.  These represent paradigm-shifting advancements 

with respect to the current practice: 1) high-frequency active interrogation is conducted without 

direct contact between the sensor probe and the underlying structure, thereby significantly 

expediting the inspection while maintaining high accuracy and robustness; and 2) with the machine 

learning approach, there is no need to develop complex finite element model of the structure to be 

inspected, and empirical knowledge can be conveniently incorporated into decision making.  

While physically different, the magneto-mechanical impedance measured by the new sensor is 

conceptually similar to piezoelectric impedance.  As such, the knowledge acquired from the 

current phase of research can be applied.  As the continuation of the current research based on 

piezoelectric transducers, we these new concepts to generic testbeds.  Meanwhile, the methodology 

developed can be extended to a variety of infrastructure components such as bridge structures and 

railway tracks. 

 

1.2 Research, Objectives, and Tasks 
The overarching goal of this project is to develop a new and robust damage identification sensory 

system that can detect damage in large-scale infrastructure components through the concurrent 

advancements in non-contact sensing and machine learning based decision making. Our specific 

objectives are 
a. Explore new non-contact sensing mechanisms and formulate analysis and design methodologies; 

b. Develop novel machine learning algorithms that can conduct fault detection based on measurement 

signals. 

 

To accomplish these objectives, research activities along two thrust areas are executed, sensor 

design and damage identification algorithmic investigation. Four tasks are conducted: 

Task 1: Development of mathematical model of magneto-mechanical impedance sensor 

Task 2: Adaptive sensor synthesis with optimal performance 

Task 3: Formulation of neural network for fault detection and classification   

Task 4: Robust decision making  

 

1.3 Report Overview 
In the subsequent chapters, we present the research methodology and results obtained throughout 

this research. 

 

Chapter 2 outlines the materials involved in this research. The sensor design and analyses are based 

upon correlated experimental investigation and analytical studies. Damage detection and sensor 

anomaly analysis is through machine leaning techniques. The experimental testbeds are 

summarized. 

 

Chapter 3 presents in detail the research tasks as well as the key data/results. The analytical 

modeling of sensor-structure interaction is developed. In order to increase the detection sensitivity, 
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advanced mechatronic synthesis is carried out which can effectively amplify the anomaly signature 

in the impedance measurement acquired by the non-contact sensor. Fault detection based on 

machine learning technique is then presented for bolt joint loosening that is extremely hard to 

detect and analyze using conventional techniques. All the results are validated experimentally. 

 

Chapter 4 summarizes the workforce training aspect of the project as well as knowledge 

dissemination. 

 

Chapter 5 provides the overall conclusion as well as recommendation for future work   
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Chapter 2: Methodology 
 

2.1 Materials 
In terms of physical materials, this project involves non-contact magneto-mechanical transducers 

used as actuators and sensors concurrently for impedance measurement, advanced circuitry 

elements, piezoelectric transducers for excitation and sensing, host structures made of aluminum 

plates, as well as power supply and data acquisition equipment.  

 

In terms of reporting materials, in this final report we provide details of  

a) sensor design;  

b) analytical investigation of sensor-structure interaction;  

c) adaptive non-contact sensing mechanism analysis; and  

d) fault detection based on machine learning. 

 

2.2 Test Setup & Process 
 

As shown in Figure 1, we use an electrical coil inserted with a permanent magnet which is further 

coupled with advanced circuitry elements to form the sensor unit. When excitation current goes 

through the coil, harmonic magnetic field is generated, inducing eddy currents into the metal 

nuclear structure. The eddy currents, moreover, can generate the Lorentz force under the 

permanent magnet effect to induce ultrasonic waves in the structure, leading to local oscillations 

in the structure. Various failure modes such as stress cracking, fatigue cracking, erosion, or bolt 

joint loosening will change the local oscillations and essentially change the distribution of the 

induced eddy currents, which will in turn affect the magnetic flux density through the coil and 

eventually change the current of the coil, or the structural impedance. By analyzing the change of 

the impedance information one can detect and identify the cracking or erosion. This impedance 

measurement is exactly analogous to the piezoelectric impedance sensing. [1,2]. 

An important innovation is the introduction of tunable resonance. Here we integrate a tunable 

capacitance. The tunable capacitance and the coil form a resonant circuit for actuation 

amplification.  

 

Figure 1. a) Magneto-mechanical sensor with circuitry integration; b) tunable capacitance circuit. 

 

To explore machine learning based fault detection and further explore the possibility of sensor 

anomaly detection, we construct a testbed as shown in Figure 2. The intention is to detect bolt-

joint loosening as well as sensor anomaly occurrence.  
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Figure 2. Testbed setup for fault detection of bolt joint loosening. 

 

The details of the analyses and testings are reported in Chapter 3. 
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Chapter 3: Results and Discussion 
 

3.1 Non-contact sensor analysis and sensitivity enhancement through mechatronic 

synthesis 

The analytical investigation of the non-contact sensor is built upon a one degree-of-freedom (DOF) 

model to represent the interested mode of the mechanical structure.  The dynamic equation of the 

structure under the effect of the magnetic transducer can be written as 

Lzmq cq kq f+ + =                                                                         (1)                                                                     

Here, m , c  and k  are the equivalent mass, damping and stiffness, and q  is the mechanical 

displacement.  Applying a sinusoidal voltage input to the magnetic transducer induces eddy 

currents into the electrically conductive surface of the structure.  Under the simultaneous effects 

of the eddy currents flowing in the structural surface and the static magnetic field of the permanent 

magnet, the Lorentz force is generated, the magnitude of which can be derived as 
1

ˆ ˆ
Lz Mf k Q= .  

Hereafter the hat notation indicates the magnitude.  Q  is the electrical charge flow.  1Mk  is one of 

the two parameters characterizing the magneto-mechanical coupling effect.  Meanwhile, the 

transducer dynamics is described by [3] 

      ( )M M s M iL Q R R Q V V+ + + =                                                       (2) 

where ML  and MR  are the coil inductance and resistance, sR  is the resistance (that is usually small) 

of a resistor serially connected into the circuit to facilitate the measurement of electrical current, 

iV  is the voltage input.  MV is the voltage output due to the structural dynamic response.  When the 

structure vibrates upon the Lorentz force excitation, the eddy currents in the structural surface are 

re-distributed, which affect the magnetic field inside the coil.  This magnetic field change can 

induce new voltage in the circuit.  One can then derive 2
ˆ ˆ
M MV k q= , where 2Mk  is another magneto-

mechanical coupling constant.  The magneto-mechanical impedance extracted by the magnetic 

transducer can then be expressed as 

 
2 2

1 2

2

ˆ [ ( )]( )ˆ
ˆ ( )

i M M s M M
C

V L i R R m ic k k k
Z

i m ic kI

   

  

− + + − + + −
= =

− + +
                           (3) 

An enabling idea of this project is to incorporate circuitry elements to the magnetic transducer, 

which induces dynamic interaction between the sensor and the structure to enhance the coupling 

and to amplify the damage signature.  We connect a capacitor ( aC ) and a negative resistance 

element ( NR ) to the magnetic transducer (Figure 1), which, together with the coil inductance and 

inherent resistance, form a resonant circuit.  The electro-magnetic dynamics of the transducer with 

circuitry integration can then be expressed as 

      ( ) (1/ )M M s N a M iL Q R R R Q C Q V V+ + − + + =                                                (5) 

Combining Eqs. (1) and (5), we can obtain the magneto-mechanical admittance as 

2

2 2

1 2

ˆ ( )ˆ
ˆ [ ( ) 1/ ]( )

C

M M s N a M Mi

I i m ic k
Y

L i R R R C m ic k k kV

  

   

− + +
= =

− + + − + − + + −
                    (6) 

As can be seen from Eq. (6), the magneto-mechanical admittance includes the information of the 

structural mass, stiffness, and damping properties.  The change of this admittance can be used to 

infer damage occurrence in the structure.  While the impedance and the admittance are inverses of 
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each other, hereafter we focus on the admittance as information carrier for damage detection, 

because, as shown in Eq. (6) and by the analysis presented below, the admittance measurements 

can be greatly impacted by circuitry integration.   

Indeed, one major change introduced by the circuitry integration is that, in addition to the 

original structural resonance, a new resonant effect due to circuitry dynamics can be created in the 

relation of admittance versus frequency.  It is well-known that in stationary wave/vibratory 

motion-based damage detection, the damage-induced change of response is most significant 

around the resonant peaks.  We cam select the capacitance aC  such that the circuitry resonant 

frequency ( 1/ aLC ) matches the structural resonant frequency ( /k m ).  As we will apply 

excitation voltage around the structural resonant frequency to detect damage, under such 

capacitance selection the circuitry resonance may amplify the voltage received by the transducer, 

thereby amplifying the local vibratory motion. We will use negative resistance NR  to cancel out 

the coil inherent resistance MR  to further reduce the circuitry impedance [4].  As such, the sensing 

voltage in the transducer circuitry may also be amplified.  

 

 

 

 

 

 

 

 

 

 

Figure 3 Experimental results of adaptive sensing: a) magneto-mechanical admittance 

measurements without and with damage, before and after circuitry integration; b) change of 

magneto-mechanical admittance due to damage, before and after circuitry integration. 

We have performed experimental validation.  The comparisons of admittance measurement 

and damage detection results are plotted in Figure 3 (in dB scale).  With the circuitry integration, 

the admittance measurements are greatly amplified (Figure 3a).  For the undamaged beam, after 

the circuitry integration, the peak admittance magnitude measured is increased by about 38 dB, 

which indicates greatly increased signal-to-noise ratio in measurement.  As damage occurs, the 

magnitude changes and frequency shifts between the resonant peaks of the undamaged and 

damaged admittance curves become much more significant after circuitry integration.  Figure 3b 

shows the curves of admittance change.  With the circuitry integration, the curve of admittance 

change becomes very clear and smooth.  Furthermore, it can be seen that the peak magnitude of 

admittance change is increased by about 70 dB.  That is, the admittance difference (i.e., the damage 

indicator) is amplified by more than three orders of magnitude, which demonstrates that the new 

concept of circuitry integration can effectively enhance the magneto-mechanical 

coupling/interaction around resonances. 
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3.2 Machine learning based fault detection using impedance measurement 

Impedance measurement can be effective in detecting and identifying structural damage based on 

finite element inverse analysis. Nevertheless, there are damage scenarios in infrastructure systems 

that are very hard to model using first-principle analysis. For example, bolt fasteners are widely 

used in various systems due to their affordability, ease of installation, and reliable 

interchangeability. These fasteners are crucial for maintaining secure, sealed connections in 

infrastructure, where their performance ensures the structural integrity of pressure vessels. 

However, bolt loosening remains a significant concern, particularly in environments exposed to 

vibration, temperature fluctuations, and mechanical stress [5]. Consequently, data-driven 

approaches, such as machine learning, have become the predominant method in bolt loosening 

detection, often combined with various sensing techniques. These techniques include acoustic 

emission (AE), fiber Bragg-grating (FBG) sensors, electrical conductivity, piezoelectric 

transducers, and vibration-based methods [6]. 

In these complex systems, data availability is often limited due to the challenges of acquiring 

comprehensive measurements, making damage detection even more demanding. Additionally, 

conventional deep learning methods, whether supervised or unsupervised, face several notable 

challenges in such scenarios. Supervised learning, while powerful, requires large volumes of 

labeled data, and the labeling process is often time-intensive and impractical for real-world 

applications. For larger datasets, complex network architectures are typically necessary, further 

increasing computational costs. Conversely, in small-sample scenarios, these methods often 

struggle to generalize effectively, as they are highly sensitive to data variability and noise. 

Addressing noise or variability usually demands additional network design or feature extraction 

processes, adding complexity and reducing their applicability in real-time or resource-constrained 

environments. 

Alternatively, dictionary learning offers an all-in-one framework for damage detection, addressing 

many limitations of traditional deep learning methods [7]. It is effective in both large- and small-

sample scenarios by representing data as sparse combinations of basis vectors, or atoms, learned 

directly from raw data. This sparse representation emphasizes key features while suppressing 

noise, inherently performing denoising during the process. Unlike deep learning, dictionary 

learning eliminates the need for complex network architectures or extensive labeled datasets, 

making it computationally efficient and highly interpretable. Diagnosis is achieved by first 

obtaining a sparse vector for the test dataset using the trained dictionary. Each sub-dictionary is 

then used to reconstruct the test data, and the reconstruction error is calculated. The sub-dictionary 

minimizing the reconstruction error identifies the corresponding fault category.   

In the processing of engineering signals or engineering data analysis, it is often desirable to 

represent signals in ways that highlight their underlying structure while minimizing redundancy. 

One approach that has gained considerable attention is sparse representation, where a signal is 

expressed as a combination of a few significant components from a larger dictionary. A signal 
my  can often be represented in a sparse manner using a combination of elements from a 

predefined dictionary. Mathematically, this can be expressed as [8]: 

1

y Dx d d
n

j j j j

j j S

x x
= 

= = =                                                         (7) 

where, D
m n is a dictionary matrix whose columns d j form a set of basis vectors, and x

n  

is a sparse coefficient vector. In general, the dictionary D is overcomplete, meaning that it contains 
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more basis vectors than the signal’s dimensionality (i.e., m < n). This allows for flexibility in 

choosing a sparse set of coefficients, where most of the entries in jx  are zero, and only a few non-

zeros elements contribute significantly to the signal. The goal is to choose the dictionary D in such 

a way that the signal can be represented with minimal non-zero coefficients, revealing its sparsity 

in the chosen domain. Many types of signals, particularly periodic, or structured data like image 

and audio, have sparse representations when transformed into suitable bases, such as Fourier or 

wavelet domains. If there is no information available about the signals, then the basis matrices can 

be obtained via training signals using Dictionary Learning, which will be explained in the next 

section. The sparse representation is illustrated in Figure 4. 

 
Figure 4. Illustration of sparse representation. 

The primary aim of this study is to recover the signal y
m  using compressive sensing 

framework, where only a limited set of measurement z
p is available. Here, p << m. Each 

measurement vector z is a linear projection of the full signal y and can be expressed as 

z θy θDx φx= = =                                                                 (8) 

Here, φ θD= , and θ
p m  represents the measurement matrix, which typically serves as a binary 

matrix indicating sensor locations. Each row of θmatrix has a single non-zero element (with a 

value of 1) corresponding to the sensor’s location, while all other entries are zero. Because the 

number of measurements p is much smaller than the signal length m, reconstructing the original 

signal y from z becomes an underdetermined problem. The solution hinges on finding a sparse 

representation of the measurements z in a subspace of the dictionary D. The task is to find x , the 

sparse representation of z in the sub-dictionary of D basis, i.e.,φ . x can be obtained accurately by 

solving optimization problems as follows: 
2

0min || ||   s.t. || ||  
x

z φx F jx T j−                                                    (9) 

where, 0|| ||  is the 0L  norm and T is the sparsity level. As with dictionary learning, we use the 

Orthogonal Matching Pursuit (OMP) algorithm [9] to solve this optimization.  Once obtaining x  

we can reconstruct the full-filed data by solving the forward problem, 

y Dx=                                                                           (10) 

Dictionary learning has found increasing usage in both image processing and machine learning 

applications. In the realm of image processing, it has demonstrated its effectiveness in tasks such 

as denoising, edge detection, and image super-resolution. Within machine learning, dictionary 

learning is applied for feature extraction, improving data compression, and making accurate 

predictions for missing data.  In this research, we adopt the K-SVD (K-singular value 
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decomposition) algorithm [10]to conduct dictionary learning. The K-SVD method addresses the 

following optimization problem: 
2

0min || ||  s.t. || ||  
D,x

y Dx F jx T j−                                                    (11) 

where jx  denotes the j-th column of matrix x . The notation 
2|| ||F  represents the squared Frobenius 

matrix norm of a matrix. Consequently, the goal of K-SVD is to identify both the dictionary D and 

the coefficient matrix x that collectively minimize the reconstruction error between the original 

training data and the reconstructed signals. K-SVD ensures that the number of non-zero entries in 

each column of x does not exceed a given threshold T. The optimization problem tackled by K-

SVD is non-convex and computationally intensive. To address this, K-SVD divides the problem 

into two sub-steps: sparse coding, where the coefficient x is computed to represent the data using 

a fixed dictionary D, and dictionary update, where the dictionary D is adjusted to better fit the 

data while keeping the sparse representation intact.  

 

Figure 2 illustrates the experimental setup for detecting bolt loosening on a pressure box. The 

pressure box consists mainly of two parts: the lid and the rectangular main box. The lid is fastened 

to the main box using 32 bolts. The entire box is constructed to mimic the building blocks in the 

terrestrial habitats. Due to harsh environmental conditions such as moonquakes and temperature 

fluctuations, the bolts may become loosened, leading to unexpected pressure leakage that could 

threaten the crew in the habitat. Therefore, health monitoring of the bolt joints is necessary. The 

data acquisition for different fault types is summarized in Table 1.  

 

Table 1. Bolt loosening damage case setup. 

Location Bolt Loosening Level  

Bolt 1 Healthy, 40%, 75% and 100% 

Bolt 2 Healthy, 40%, 75% and 100% 

Bolt 3 Healthy, 40%, 75% and 100% 

Bolt 4 Healthy, 40%, 75% and 100% 

Total 13 cases 

Healthy, Bolt 1 (40%, 75%, 100%), Bolt 2 

(40%, 75%, 100%), Bolt 3 (40%, 75%, 

100%), Bolt 4 (40%, 75%, 100%) 
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Figure 5. Bolt loosening damage classification on testing datasets. 

 

Figure 5 illustrates the results of the damage detection and classification process. The figure 

contains 13 subplots corresponding to the 13 cases in Table 1, each corresponding to a specific 

bolt loosening type. The first subplot represents the healthy state, while every subsequent group 

of three subplots corresponds to 40%, 75%, and 100% torque loss for bolts 1 to 4. To explain how 

damage classification and detection are achieved using the reconstruction strategy, we focus on 

the first and last subplots. The core idea behind reconstruction-based fault detection is that, given 

a test data sample, we search through all dictionaries and obtain sparse coefficient vectors through 

sparse coding. We then use these coefficients to reconstruct the test signal. If the test data 

corresponds to a certain damage type, the dictionary associated with that class will effectively 

reconstruct the test data. Conversely, dictionaries not associated with the test data's class will 

produce reconstructions with larger errors. We use the Root Mean Square Error (RMSE) as an 

error metric, calculated between the reconstructed data and the original test data. A smaller RMSE 

indicates a better match and suggests that the test data belongs to that particular damage category. 

For example, in the first subplot, the test data comes from the healthy state. We perform dictionary 

search and reconstruction using all dictionaries, then compute the RMSE between each 

reconstructed signal and the test data. Visualization shows that the reconstruction using the first 

dictionary (healthy state) yields the smallest RMSE, correctly indicating that the test data belongs 

to the healthy class. In the last subplot, the test data corresponds to the 13th class, which represents 

the fully loosened state of Bolt 4. We again perform dictionary search and reconstruction, 

obtaining 13 reconstructed signals. By computing the RMSE between each reconstructed signal 

and the test data, we find that the 13th reconstructed signal has the smallest RMSE. This result 

indicates that the test data belongs to the 13th damage category. Similar explanations apply to the 

damage monitoring of other test data samples. Moreover, the results also suggest strong 

classification ability, with the reconstruction-based strategy yielding accurate detection and 

classification of the different damage categories. The RMSE metric consistently shows smaller 
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errors for the correct dictionaries, indicating that the method performs well in identifying the 

appropriate damage types, which demonstrates classification performance to 100%. 

Using the learned dictionary and sparse codes, we can reconstruct the testing data, as shown in 

Figure 6. The top subplot shows the comparison between the original test data and the 

reconstructed signals using atom 2 and atom combinations 2, 4, and 7 respectively. The bottom 

subplot focuses on a specific frequency range (45,000 to 46,000 Hz) for a more detailed 

comparison. When only atom 2 is used for reconstruction, we can see that the reconstructed data 

is largely consistent with the original test data. When we use all the atoms with coefficients, namely 

atoms 2, 4, and 7, we can observe that, as shown in the zoomed-in plot, the reconstruction using 

three atoms is closer to the actual test data compared to using only atom 2. This indicates that the 

two atoms (atoms 4 and 7), which seemed like noise, play a certain role in fine-tuning during 

reconstruction. However, their sparsity is close to zero, meaning the primary contribution still 

comes from atom 2. 

 

 
Figure 6. Data reconstruction using different atoms for testing data 1 (healthy state). 

 

When higher reconstruction accuracy is desired, it is expected that all atoms would contribute to 

the reconstruction. However, we observe from the sparse code that some atoms, which resemble 

noise, have very small coefficients. This raises the question of whether such atoms affect damage 

identification, which we aim to verify. Therefore, we remove atoms 4 and 7 and reconstruct using 

only atom 2, followed by calculating the RMSE and performing damage classification based on 

the reconstruction error. Similarly, for other test data, only the principal atoms that exhibit the 

same changes as the training data are used for reconstruction, excluding the contribution of noise-

like atoms. The classification results are shown in Figure 14. It is evident that the reconstruction 

method is still able to accurately classify each category with accuracy of 100%. This result 

indicates that the contribution of noise-like atoms to damage identification can be ignored, even 

though they may have a minor tuning effect when participating in data curve reconstruction. 

From the above analysis, it can be concluded that dictionary learning first captures the overall 

trend of the training data. The features are amplified in the dictionary as principal modes. 
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Furthermore, the dictionary also separates noise from the training data. Comparing the 

classification results before and after removing the contribution of noise atoms shows that 

removing noise factors has no effect on damage classification. This method can be applied to other 

similar fields, such as denoising, image processing, and more. 

 
Figure 7. Bolt loosening damage classification on testing datasets without noise-like atoms for 

reconstruction. 
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Chapter 4: Education Impact and Knowledge Dissemination 
 

Throughout this project, three graduate students are involved at different stages of research. Yang 

Zhang and Ting Wang set up the testbed and conducted data acquisition. Yang Zhang and Qianyu 

Zhou worked on damage identification algorithm. In particular, Yang Zhang led the algorithm 

development and case demonstration, while Qianyu Zhou provided support. The work is heavily 

experimental. All these students gained significant amount of experiences on mechatronic 

synthesis, sensor tuning, machine learning, and decision making for structural fault detection. The 

research components have been incorporated to their respective Ph.D. dissertations. Yang Zhang 

and Ting Wang are approaching the end of their Ph.D. studies. Qianyu Zhou is progressing well 

in his Ph.D. study. 

 

The research findings have been integrated into several undergraduate- and graduate-level classes 

that the PI has instructed in project years, including ME3220 Mechanical Vibrations, ME 5420 

Advanced Mechanical Vibrations, ME 5210 Intelligent Material Systems and Structures, and ME 

5895 Structural Dynamics. 

 

The research outcome has been presented systematically in TIDC annual review meetings and 

poster competitions. The key research findings are being summarized into archival publications. 
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Chapter 5: Conclusions and Recommendations 
The goal of this project is to develop a new and robust damage identification sensory system that 

can detect damage in large-scale infrastructure components through the concurrent advancements 

in non-contact sensing and machine learning based decision making. We have successfully 

accomplished this goal. 

 

Our findings are the following: 

• Leveraging magneto-mechanical coupling, there is indeed two-way coupling between the non-

contact sensor and the host mechanical structure. Moreover, one can extract magneto-

mechanical impedance that is analogous to piezoelectric impedance measurement to facilitate 

damage identification. 

• Circuitry integration with tunable capacitance and negative resistance can effectively amplify 

the measurement signal-to-noise ratio in magneto-mechanical impedance measurement, 

yielding a new sensing mechanism. 

• Machine learning techniques can be combined with impedance sensing to enable highly 

sensitive fault detection and classification, especially for scenarios where first-principle based 

inverse analysis is hard to establish. In particular, dictionary learning for bolt-loosening 

detection is formulated and thoroughly examined for a benchmark structure.  

• Dictionary learning provides an effective way to extract key features from complex impedance 

signatures, allowing one to represent the underlying patterns with a sparse set of representative 

atoms. The classification of test data into different damage categories is based on the 

reconstruction error.  

• The interpretability of learned dictionary is provided that the dictionary can capture the trends 

in the training data while separating out the noise. The noise contribution is negligible in the 

reconstruction and does not affect the accuracy of damage classification.  

• The reconstructed full-field measurement can lead to successful structural fault detection. 

The research outcomes lay down a foundation for engineering implementation for infrastructure 

monitoring. In order to fully unleash the potential of the new technology, we envision the following 

further advancements: 

• More research will need to be done to solidify the non-contact impedance sensing technique, 

in particular to handle the noise measurement owing to ambient factors. Possible directions 

including digitalizing the circuitry integration. 

• Machine learning offers a tremendous prospect to facilitate data-drive techniques for fault 

detection and classification without the need of going through first principle modeling. One 

promising direction is to incorporate modeling into machine learning directly to facilitate 

physics-informed machine learning for fault detection.  
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