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Abstract

In this project, we develop non-contact sensing mechanism for health monitoring as well as the
associated machine-learning based technique for decision making. Currently available sensory
systems for structural health monitoring are almost all based on transducers that are directly
attached to or embedded in structures monitored. As a result, they face with critical barriers,
such as extremely high implementation cost in very large scale structures due to the large
number of sensors needed and relatively high false alarm rate due to malfunction of sensors
themselves. The non-contact nature of the proposed sensing modality will cause paradigm shift:
it leads to mobile sensory system that can monitor very large scale structures employing only a
small number of sensors, and it allows us to increase considerably the confidence level of
structural health monitoring. In this research, concurrent breakthroughs in sensor synthesis and
data analysis are pursued. We (a) develop a new non-contact impedance-based sensing
mechanism via two-way magneto-mechanical dynamic interaction that is enhanced by adaptive
electrical circuitry integration, which facilitates the tunable high-frequency interrogation to
disclose structural anomaly; and (b) formulate accurate and robust decision making strategies
that that take full advantage of the new machine learning techniques.
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Chapter 1: Introduction and Background

1.1 Project Motivation

In this research, we explore a new modality of non-contact active sensing that utilizes magneto-
mechanical coupling to facilitate unprecedented, fast inspection of infrastructure components such
as railway tracks. We further develop machine learning technique to rapidly process the data to
realize decision making and fault classification. These represent paradigm-shifting advancements
with respect to the current practice: 1) high-frequency active interrogation is conducted without
direct contact between the sensor probe and the underlying structure, thereby significantly
expediting the inspection while maintaining high accuracy and robustness; and 2) with the machine
learning approach, there is no need to develop complex finite element model of the structure to be
inspected, and empirical knowledge can be conveniently incorporated into decision making.
While physically different, the magneto-mechanical impedance measured by the new sensor is
conceptually similar to piezoelectric impedance. As such, the knowledge acquired from the
current phase of research can be applied. As the continuation of the current research based on
piezoelectric transducers, we these new concepts to generic testbeds. Meanwhile, the methodology
developed can be extended to a variety of infrastructure components such as bridge structures and
railway tracks.

1.2 Research, Objectives, and Tasks
The overarching goal of this project is to develop a new and robust damage identification sensory
system that can detect damage in large-scale infrastructure components through the concurrent
advancements in non-contact sensing and machine learning based decision making. Our specific
objectives are
a. Explore new non-contact sensing mechanisms and formulate analysis and design methodologies;
b. Develop novel machine learning algorithms that can conduct fault detection based on measurement
signals.

To accomplish these objectives, research activities along two thrust areas are executed, sensor
design and damage identification algorithmic investigation. Four tasks are conducted:

Task 1: Development of mathematical model of magneto-mechanical impedance sensor

Task 2: Adaptive sensor synthesis with optimal performance

Task 3: Formulation of neural network for fault detection and classification

Task 4: Robust decision making

1.3 Report Overview
In the subsequent chapters, we present the research methodology and results obtained throughout
this research.

Chapter 2 outlines the materials involved in this research. The sensor design and analyses are based
upon correlated experimental investigation and analytical studies. Damage detection and sensor
anomaly analysis is through machine leaning techniques. The experimental testbeds are
summarized.

Chapter 3 presents in detail the research tasks as well as the key data/results. The analytical
modeling of sensor-structure interaction is developed. In order to increase the detection sensitivity,
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advanced mechatronic synthesis is carried out which can effectively amplify the anomaly signature
in the impedance measurement acquired by the non-contact sensor. Fault detection based on
machine learning technique is then presented for bolt joint loosening that is extremely hard to
detect and analyze using conventional techniques. All the results are validated experimentally.

Chapter 4 summarizes the workforce training aspect of the project as well as knowledge
dissemination.

Chapter 5 provides the overall conclusion as well as recommendation for future work
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Chapter 2: Methodology

2.1 Materials

In terms of physical materials, this project involves non-contact magneto-mechanical transducers
used as actuators and sensors concurrently for impedance measurement, advanced circuitry
elements, piezoelectric transducers for excitation and sensing, host structures made of aluminum
plates, as well as power supply and data acquisition equipment.

In terms of reporting materials, in this final report we provide details of
a) sensor design;
b) analytical investigation of sensor-structure interaction;
c) adaptive non-contact sensing mechanism analysis; and
d) fault detection based on machine learning.

2.2 Test Setup & Process

As shown in Figure 1, we use an electrical coil inserted with a permanent magnet which is further
coupled with advanced circuitry elements to form the sensor unit. When excitation current goes
through the coil, harmonic magnetic field is generated, inducing eddy currents into the metal
nuclear structure. The eddy currents, moreover, can generate the Lorentz force under the
permanent magnet effect to induce ultrasonic waves in the structure, leading to local oscillations
in the structure. Various failure modes such as stress cracking, fatigue cracking, erosion, or bolt
joint loosening will change the local oscillations and essentially change the distribution of the
induced eddy currents, which will in turn affect the magnetic flux density through the coil and
eventually change the current of the coil, or the structural impedance. By analyzing the change of
the impedance information one can detect and identify the cracking or erosion. This impedance
measurement is exactly analogous to the piezoelectric impedance sensing. [1,2].

An important innovation is the introduction of tunable resonance. Here we integrate a tunable
capacitance. The tunable capacitance and the coil form a resonant circuit for actuation
amplification.

' - ,.’1 N ﬂl s
?®®®@@@ﬁ J, M\—J‘_u :j|'/
Repalf @ Tl (b)

Figure 1. a) Magneto-mechanical sensor with circuitry integration; b) tunable capacitance circuit.

To explore machine learning based fault detection and further explore the possibility of sensor
anomaly detection, we construct a testbed as shown in Figure 2. The intention is to detect bolt-
joint loosening as well as sensor anomaly occurrence.
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Figure 2. Testbed setup for fault detection of bolt joint loosening.

The details of the analyses and testings are reported in Chapter 3.
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Chapter 3: Results and Discussion

3.1 Non-contact sensor analysis and sensitivity enhancement through mechatronic
synthesis
The analytical investigation of the non-contact sensor is built upon a one degree-of-freedom (DOF)
model to represent the interested mode of the mechanical structure. The dynamic equation of the
structure under the effect of the magnetic transducer can be written as

mg+cq+kq=f, (1)
Here, m, ¢ and k are the equivalent mass, damping and stiffness, and q is the mechanical

displacement. Applying a sinusoidal voltage input to the magnetic transducer induces eddy
currents into the electrically conductive surface of the structure. Under the simultaneous effects
of the eddy currents flowing in the structural surface and the static magnetic field of the permanent

magnet, the Lorentz force is generated, the magnitude of which can be derived as f,, =k,,,Q.
Hereafter the hat notation indicates the magnitude. Q is the electrical charge flow. k,,, is one of
the two parameters characterizing the magneto-mechanical coupling effect. Meanwhile, the
transducer dynamics is described by [3]

L,Q+(Ry +R)Q+V,, =V, 2
where L,, and R,, are the coil inductance and resistance, R, is the resistance (that is usually small)
of a resistor serially connected into the circuit to facilitate the measurement of electrical current,
V; is the voltage input. V,, is the voltage output due to the structural dynamic response. When the
structure vibrates upon the Lorentz force excitation, the eddy currents in the structural surface are
re-distributed, which affect the magnetic field inside the coil. This magnetic field change can
induce new voltage in the circuit. One can then derive V,, =k,,,G , where k,,, is another magneto-
mechanical coupling constant. The magneto-mechanical impedance extracted by the magnetic
transducer can then be expressed as

7 z\i;: [-L, @° +ia)(RM + Rs)]g—mwz +ico+k) =Ky Ky,
| io(—-mo” +icw+k)

(3)

An enabling idea of this project is to incorporate circuitry elements to the magnetic transducer,
which induces dynamic interaction between the sensor and the structure to enhance the coupling
and to amplify the damage signature. We connect a capacitor (C,) and a negative resistance

element (R, ) to the magnetic transducer (Figure 1), which, together with the coil inductance and
inherent resistance, form a resonant circuit. The electro-magnetic dynamics of the transducer with
circuitry integration can then be expressed as
LuQ+(Ry +R, =Ry )Q+(/C,)Q+V,, =V, (5)
Combining Egs. (1) and (5), we can obtain the magneto-mechanical admittance as
o0 io(—Mme® +icw+ k)
"V [LL,@* +io(R, +R.—R,)+1/C,1(—ma’ + ica+ k) — Ky Ky,

c =
I

(6)

As can be seen from Eq. (6), the magneto-mechanical admittance includes the information of the
structural mass, stiffness, and damping properties. The change of this admittance can be used to
infer damage occurrence in the structure. While the impedance and the admittance are inverses of
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each other, hereafter we focus on the admittance as information carrier for damage detection,
because, as shown in Eqg. (6) and by the analysis presented below, the admittance measurements
can be greatly impacted by circuitry integration.

Indeed, one major change introduced by the circuitry integration is that, in addition to the
original structural resonance, a new resonant effect due to circuitry dynamics can be created in the
relation of admittance versus frequency. It is well-known that in stationary wave/vibratory
motion-based damage detection, the damage-induced change of response is most significant
around the resonant peaks. We cam select the capacitance C, such that the circuitry resonant

frequency (/1/LC, ) matches the structural resonant frequency (+k/m). As we will apply

excitation voltage around the structural resonant frequency to detect damage, under such
capacitance selection the circuitry resonance may amplify the voltage received by the transducer,
thereby amplifying the local vibratory motion. We will use negative resistance R, to cancel out

the coil inherent resistance R,, to further reduce the circuitry impedance [4]. As such, the sensing
voltage in the transducer circuitry may also be amplified.
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Figure 3 Experimental results of adaptive sensing: a) magneto-mechanical admittance
measurements without and with damage, before and after circuitry integration; b) change of
magneto-mechanical admittance due to damage, before and after circuitry integration.

We have performed experimental validation. The comparisons of admittance measurement
and damage detection results are plotted in Figure 3 (in dB scale). With the circuitry integration,
the admittance measurements are greatly amplified (Figure 3a). For the undamaged beam, after
the circuitry integration, the peak admittance magnitude measured is increased by about 38 dB,
which indicates greatly increased signal-to-noise ratio in measurement. As damage occurs, the
magnitude changes and frequency shifts between the resonant peaks of the undamaged and
damaged admittance curves become much more significant after circuitry integration. Figure 3b
shows the curves of admittance change. With the circuitry integration, the curve of admittance
change becomes very clear and smooth. Furthermore, it can be seen that the peak magnitude of
admittance change is increased by about 70 dB. That is, the admittance difference (i.e., the damage
indicator) is amplified by more than three orders of magnitude, which demonstrates that the new
concept of circuitry integration can effectively enhance the magneto-mechanical
coupling/interaction around resonances.
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3.2 Machine learning based fault detection using impedance measurement

Impedance measurement can be effective in detecting and identifying structural damage based on
finite element inverse analysis. Nevertheless, there are damage scenarios in infrastructure systems
that are very hard to model using first-principle analysis. For example, bolt fasteners are widely
used in various systems due to their affordability, ease of installation, and reliable
interchangeability. These fasteners are crucial for maintaining secure, sealed connections in
infrastructure, where their performance ensures the structural integrity of pressure vessels.
However, bolt loosening remains a significant concern, particularly in environments exposed to
vibration, temperature fluctuations, and mechanical stress [5]. Consequently, data-driven
approaches, such as machine learning, have become the predominant method in bolt loosening
detection, often combined with various sensing techniques. These techniques include acoustic
emission (AE), fiber Bragg-grating (FBG) sensors, electrical conductivity, piezoelectric
transducers, and vibration-based methods [6].

In these complex systems, data availability is often limited due to the challenges of acquiring
comprehensive measurements, making damage detection even more demanding. Additionally,
conventional deep learning methods, whether supervised or unsupervised, face several notable
challenges in such scenarios. Supervised learning, while powerful, requires large volumes of
labeled data, and the labeling process is often time-intensive and impractical for real-world
applications. For larger datasets, complex network architectures are typically necessary, further
increasing computational costs. Conversely, in small-sample scenarios, these methods often
struggle to generalize effectively, as they are highly sensitive to data variability and noise.
Addressing noise or variability usually demands additional network design or feature extraction
processes, adding complexity and reducing their applicability in real-time or resource-constrained
environments.

Alternatively, dictionary learning offers an all-in-one framework for damage detection, addressing
many limitations of traditional deep learning methods [7]. It is effective in both large- and small-
sample scenarios by representing data as sparse combinations of basis vectors, or atoms, learned
directly from raw data. This sparse representation emphasizes key features while suppressing
noise, inherently performing denoising during the process. Unlike deep learning, dictionary
learning eliminates the need for complex network architectures or extensive labeled datasets,
making it computationally efficient and highly interpretable. Diagnosis is achieved by first
obtaining a sparse vector for the test dataset using the trained dictionary. Each sub-dictionary is
then used to reconstruct the test data, and the reconstruction error is calculated. The sub-dictionary
minimizing the reconstruction error identifies the corresponding fault category.

In the processing of engineering signals or engineering data analysis, it is often desirable to
represent signals in ways that highlight their underlying structure while minimizing redundancy.
One approach that has gained considerable attention is sparse representation, where a signal is
expressed as a combination of a few significant components from a larger dictionary. A signal

y e R™ can often be represented in a sparse manner using a combination of elements from a
predefined dictionary. Mathematically, this can be expressed as [8]:
y:Dx:ijdeZdej (7)
j=1 jeS
where, D e R™"is a dictionary matrix whose columns d; form a set of basis vectors, and X e R"
is a sparse coefficient vector. In general, the dictionary D is overcomplete, meaning that it contains
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more basis vectors than the signal’s dimensionality (i.e., m < n). This allows for flexibility in
choosing a sparse set of coefficients, where most of the entries in x; are zero, and only a few non-

zeros elements contribute significantly to the signal. The goal is to choose the dictionary D in such
a way that the signal can be represented with minimal non-zero coefficients, revealing its sparsity
in the chosen domain. Many types of signals, particularly periodic, or structured data like image
and audio, have sparse representations when transformed into suitable bases, such as Fourier or
wavelet domains. If there is no information available about the signals, then the basis matrices can
be obtained via training signals using Dictionary Learning, which will be explained in the next
section. The sparse representation is illustrated in Figure 4.

Sparse Codes X
Input Signals Y Dictionary D = Linear Combination
i M
[ L
H —J. X o =x- [+ +xe] b
Q L
K (>n) =
|

Figure 4. Illlustration of sparse representation.
The primary aim of this study is to recover the signal yeR™ using compressive sensing

framework, where only a limited set of measurement z € R”is available. Here, p << m. Each
measurement vector z is a linear projection of the full signal y and can be expressed as

Z=0y =0Dx = ¢x (8)
Here, @ =0D, and 0 € R™™ represents the measurement matrix, which typically serves as a binary
matrix indicating sensor locations. Each row of 6 matrix has a single non-zero element (with a
value of 1) corresponding to the sensor’s location, while all other entries are zero. Because the
number of measurements p is much smaller than the signal length m, reconstructing the original
signal y from z becomes an underdetermined problem. The solution hinges on finding a sparse
representation of the measurements z in a subspace of the dictionary D. The task is to find X, the
sparse representation of z in the sub-dictionary of D basis, i.e.,@ . X can be obtained accurately by

solving optimization problems as follows:
min||z—x|f st [1x; [,<T vj (9)

where, || -]|, is the L, norm and T is the sparsity level. As with dictionary learning, we use the

Orthogonal Matching Pursuit (OMP) algorithm [9] to solve this optimization. Once obtaining X
we can reconstruct the full-filed data by solving the forward problem,

y =DX (10)
Dictionary learning has found increasing usage in both image processing and machine learning
applications. In the realm of image processing, it has demonstrated its effectiveness in tasks such
as denoising, edge detection, and image super-resolution. Within machine learning, dictionary
learning is applied for feature extraction, improving data compression, and making accurate
predictions for missing data. In this research, we adopt the K-SVD (K-singular value
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decomposition) algorithm [10]to conduct dictionary learning. The K-SVD method addresses the
following optimization problem:

min ||y -Dx|i¢ st [[%; [,<T vj (11)

where X; denotes the j-th column of matrix x. The notation ||- |IZ represents the squared Frobenius

matrix norm of a matrix. Consequently, the goal of K-SVD is to identify both the dictionary D and
the coefficient matrix x that collectively minimize the reconstruction error between the original
training data and the reconstructed signals. K-SVD ensures that the number of non-zero entries in
each column of x does not exceed a given threshold T. The optimization problem tackled by K-
SVD is non-convex and computationally intensive. To address this, K-SVD divides the problem
into two sub-steps: sparse coding, where the coefficient x is computed to represent the data using
a fixed dictionary D, and dictionary update, where the dictionary D is adjusted to better fit the
data while keeping the sparse representation intact.

Figure 2 illustrates the experimental setup for detecting bolt loosening on a pressure box. The
pressure box consists mainly of two parts: the lid and the rectangular main box. The lid is fastened
to the main box using 32 bolts. The entire box is constructed to mimic the building blocks in the
terrestrial habitats. Due to harsh environmental conditions such as moonquakes and temperature
fluctuations, the bolts may become loosened, leading to unexpected pressure leakage that could
threaten the crew in the habitat. Therefore, health monitoring of the bolt joints is necessary. The
data acquisition for different fault types is summarized in Table 1.

Table 1. Bolt loosening damage case setup.

Location Bolt Loosening Level
Bolt 1 Healthy, 40%, 75% and 100%
Bolt 2 Healthy, 40%, 75% and 100%
Bolt 3 Healthy, 40%, 75% and 100%
Bolt 4 Healthy, 40%, 75% and 100%
Healthy, Bolt 1 (40%, 75%, 100%), Bolt 2
Total 13 cases (40%, 75%, 100%), Bolt 3 (40%, 75%,

100%), Bolt 4 (40%, 75%, 100%)
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Figure 5. Bolt loosening damage classification on testing datasets.

Figure 5 illustrates the results of the damage detection and classification process. The figure
contains 13 subplots corresponding to the 13 cases in Table 1, each corresponding to a specific
bolt loosening type. The first subplot represents the healthy state, while every subsequent group
of three subplots corresponds to 40%, 75%, and 100% torque loss for bolts 1 to 4. To explain how
damage classification and detection are achieved using the reconstruction strategy, we focus on
the first and last subplots. The core idea behind reconstruction-based fault detection is that, given
a test data sample, we search through all dictionaries and obtain sparse coefficient vectors through
sparse coding. We then use these coefficients to reconstruct the test signal. If the test data
corresponds to a certain damage type, the dictionary associated with that class will effectively
reconstruct the test data. Conversely, dictionaries not associated with the test data's class will
produce reconstructions with larger errors. We use the Root Mean Square Error (RMSE) as an
error metric, calculated between the reconstructed data and the original test data. A smaller RMSE
indicates a better match and suggests that the test data belongs to that particular damage category.
For example, in the first subplot, the test data comes from the healthy state. We perform dictionary
search and reconstruction using all dictionaries, then compute the RMSE between each
reconstructed signal and the test data. Visualization shows that the reconstruction using the first
dictionary (healthy state) yields the smallest RMSE, correctly indicating that the test data belongs
to the healthy class. In the last subplot, the test data corresponds to the 13" class, which represents
the fully loosened state of Bolt 4. We again perform dictionary search and reconstruction,
obtaining 13 reconstructed signals. By computing the RMSE between each reconstructed signal
and the test data, we find that the 13" reconstructed signal has the smallest RMSE. This result
indicates that the test data belongs to the 13" damage category. Similar explanations apply to the
damage monitoring of other test data samples. Moreover, the results also suggest strong
classification ability, with the reconstruction-based strategy yielding accurate detection and
classification of the different damage categories. The RMSE metric consistently shows smaller
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errors for the correct dictionaries, indicating that the method performs well in identifying the
appropriate damage types, which demonstrates classification performance to 100%.

Using the learned dictionary and sparse codes, we can reconstruct the testing data, as shown in
Figure 6. The top subplot shows the comparison between the original test data and the
reconstructed signals using atom 2 and atom combinations 2, 4, and 7 respectively. The bottom
subplot focuses on a specific frequency range (45,000 to 46,000 Hz) for a more detailed
comparison. When only atom 2 is used for reconstruction, we can see that the reconstructed data
is largely consistent with the original test data. When we use all the atoms with coefficients, namely
atoms 2, 4, and 7, we can observe that, as shown in the zoomed-in plot, the reconstruction using
three atoms is closer to the actual test data compared to using only atom 2. This indicates that the
two atoms (atoms 4 and 7), which seemed like noise, play a certain role in fine-tuning during
reconstruction. However, their sparsity is close to zero, meaning the primary contribution still
comes from atom 2.

= original test data
0.0014 f . .
—— reconstructed using atom 2

reconstructed using atoms 2,4,7
= 00012 &
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Conduct
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Figure 6. Data reconstruction using different atoms for testing data 1 (healthy state).

When higher reconstruction accuracy is desired, it is expected that all atoms would contribute to
the reconstruction. However, we observe from the sparse code that some atoms, which resemble
noise, have very small coefficients. This raises the question of whether such atoms affect damage
identification, which we aim to verify. Therefore, we remove atoms 4 and 7 and reconstruct using
only atom 2, followed by calculating the RMSE and performing damage classification based on
the reconstruction error. Similarly, for other test data, only the principal atoms that exhibit the
same changes as the training data are used for reconstruction, excluding the contribution of noise-
like atoms. The classification results are shown in Figure 14. It is evident that the reconstruction
method is still able to accurately classify each category with accuracy of 100%. This result
indicates that the contribution of noise-like atoms to damage identification can be ignored, even
though they may have a minor tuning effect when participating in data curve reconstruction.

From the above analysis, it can be concluded that dictionary learning first captures the overall
trend of the training data. The features are amplified in the dictionary as principal modes.
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Furthermore, the dictionary also separates noise from the training data. Comparing the
classification results before and after removing the contribution of noise atoms shows that
removing noise factors has no effect on damage classification. This method can be applied to other
similar fields, such as denoising, image processing, and more.

[ [ | [ | [ | | | | | | | | | | | [ |
[l Eaa  §F T §F I §F o
N § BN ¥ I o
| ] [ | [ | | | | | | | | [ | [ | [ |
I T §F BN O I O oo
I [ | [ | [ | | | | | | | | [ |
I §F § §F §F T BN T o
I 8§ § § §F &I B oo
| ] [ | [ | [ | [ | | | | | | | | [ |

Reconstruction Error

%
|

iﬁﬁ

,_A
[
w
'S
o
-1
[
©

10 12 13 14 15 16

—
=

Fault Type Index

Figure 7. Bolt loosening damage classification on testing datasets without noise-like atoms for
reconstruction.
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Chapter 4: Education Impact and Knowledge Dissemination

Throughout this project, three graduate students are involved at different stages of research. Yang
Zhang and Ting Wang set up the testbed and conducted data acquisition. Yang Zhang and Qianyu
Zhou worked on damage identification algorithm. In particular, Yang Zhang led the algorithm
development and case demonstration, while Qianyu Zhou provided support. The work is heavily
experimental. All these students gained significant amount of experiences on mechatronic
synthesis, sensor tuning, machine learning, and decision making for structural fault detection. The
research components have been incorporated to their respective Ph.D. dissertations. Yang Zhang
and Ting Wang are approaching the end of their Ph.D. studies. Qianyu Zhou is progressing well
in his Ph.D. study.

The research findings have been integrated into several undergraduate- and graduate-level classes
that the PI has instructed in project years, including ME3220 Mechanical Vibrations, ME 5420
Advanced Mechanical Vibrations, ME 5210 Intelligent Material Systems and Structures, and ME
5895 Structural Dynamics.

The research outcome has been presented systematically in TIDC annual review meetings and
poster competitions. The key research findings are being summarized into archival publications.
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Chapter 5: Conclusions and Recommendations

The goal of this project is to develop a new and robust damage identification sensory system that
can detect damage in large-scale infrastructure components through the concurrent advancements
in non-contact sensing and machine learning based decision making. We have successfully
accomplished this goal.

Our findings are the following:

Leveraging magneto-mechanical coupling, there is indeed two-way coupling between the non-
contact sensor and the host mechanical structure. Moreover, one can extract magneto-
mechanical impedance that is analogous to piezoelectric impedance measurement to facilitate
damage identification.

Circuitry integration with tunable capacitance and negative resistance can effectively amplify
the measurement signal-to-noise ratio in magneto-mechanical impedance measurement,
yielding a new sensing mechanism.

Machine learning techniques can be combined with impedance sensing to enable highly
sensitive fault detection and classification, especially for scenarios where first-principle based
inverse analysis is hard to establish. In particular, dictionary learning for bolt-loosening
detection is formulated and thoroughly examined for a benchmark structure.

Dictionary learning provides an effective way to extract key features from complex impedance
signatures, allowing one to represent the underlying patterns with a sparse set of representative
atoms. The classification of test data into different damage categories is based on the
reconstruction error.

The interpretability of learned dictionary is provided that the dictionary can capture the trends
in the training data while separating out the noise. The noise contribution is negligible in the
reconstruction and does not affect the accuracy of damage classification.

The reconstructed full-field measurement can lead to successful structural fault detection.

The research outcomes lay down a foundation for engineering implementation for infrastructure
monitoring. In order to fully unleash the potential of the new technology, we envision the following
further advancements:

More research will need to be done to solidify the non-contact impedance sensing technique,
in particular to handle the noise measurement owing to ambient factors. Possible directions
including digitalizing the circuitry integration.

Machine learning offers a tremendous prospect to facilitate data-drive techniques for fault
detection and classification without the need of going through first principle modeling. One
promising direction is to incorporate modeling into machine learning directly to facilitate
physics-informed machine learning for fault detection.
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