
Quarterly Progress Report:

Project Number and Title: C3. Condition Assessment of Corroded Prestressed Concrete Bridge Girders
Research Area: Thrust #1: Transportation Infrastructure Monitoring and Assessment for Enhanced Life
PI: Tzuyang Yu (UMass Lowell)
Co-PI(s): Susan Faraji (UMass Lowell), Chang Hoon Lee and Moochul Shin (Western New England University or WNEU)
Reporting Period: 01/01/2021 ~ 03/31/2021
Submission Date: 03/31/2021

Overview:

The objective of this project is to assess the condition of corroded prestressed concrete (PC) bridge girders in New England by performing multiplysical field inspection and developing an integrated assessment framework. During the reporting period, our focus is on the experimental test conducted at WNEU on reinforced concrete (RC) cylinder specimens. The development of the corrosion damage model at WNEU is performed at two phases: (a) determination of corrosion degree in the context of structural behavior, and (b) integration of the corrosion degree model with the mechanistic behavior model, herein, bond-slip response. When merging the specimen into the electrolyte (i.e., salt solution), observations of the detail process are challenging because the solution is contaminated by corrosion products. Thus, a new testing platform was built, enabling one to observe at least the top surface of the cylindrical specimen in the progress of corrosion.

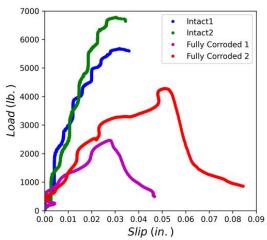

Figure 1 shows the corroded RC cylinder specimens with our observation. We also conducted pull-out tests to evaluate the bond strength of the specimen at the state (3) (i.e., a major crack, of which width is 1-2 mm, is propagated from the reinforcement to the surface over the longitudinal direction.). From the comparison (See Figure 2), it is observed: (a) the tangential bond-slip stiffnesses at the beginning of the response are similar, thus no significant deduction is observed; (b) the secant stiffness and the peak bond capacity are significantly reduced due to the corrosion damage; (c) the post-peak response driven by increasing the exiting crack opening and forming new structural cracks is observed for the corroded specimens.

Fig. 1. Observation of corrosion progress; (1) $Fe(OH)_2$ is leaked from the top surface. No visible crack (about 0.5mm to 1mm) is detected, (2) Hair line cracks were initiated around the rebar. However, they are not propagated to the side surface. (3) A primary visible crack (i.e., 1-2mm) is propagated to the surface. (Note that all observations were detected at the latest time of each phenomena, possibly being occurred before the observations.)

Transportation Infrastructure Durability Center AT THE UNIVERSITY OF MAINE

(a)

Task 3

Fully Corroded 1

(b)

9/31/21

9 Fully Corroded 2

Fig. 2: (a) Comparison of bond-slip response between intact and "fully" corroded specimens (State (3)). (Note that the term, "fully," is used for the convenience, and the quantification is in-progress.) (b) Failure modes of the specimens; Other than the existing crack due to corrosion, two additional structural cracks were formed during the pullout test. The difference in the response between Fully corroded 1 and 2 would be induced by different time span between State (1) and (3).

Percent Complete
100%
90%

65%

		tin	1
	Table 1: Task Progres		
Task Number	Start Date	End Date	
Task 1	3/1/19	9/31/19	
Task 2	9/1/19	9/31/21	

10/1/19

Table 2: Budget Progress						
Entire Project Budget	Spend Amount	Spend Percentage to Date				
\$89,403 (UML)	\$84,932 (UML)	95% (8/30/2020)				
\$85,000 (WNEU)	\$63,052.86(WNEU)	74.2% (8/30/2020)				

Table 3: Presentations at Conferences, Workshops, Seminars, and Other Events						
Title	Event Type		Locati on	Date(s)		
Short-term Mechanical Strength Prediction of Ultra- High Performance Concrete using Noncontact Synthetic Aperture Radar Imaging	2021 SPIE Smart Structures/NDE Conference	Conference presentation	Virtual meeting	March 22, 2021		

	Table 4: Publications and Submitted Papers and Reports							
Туре	Title	Citation	Date	Status				
Conference paper	Short-term Mechanical Strength Prediction of Ultra-High Performance Concrete using Noncontact Synthetic Aperture Radar Imaging	doi: 10.1117/12.2584809	March 22, 2021	Published				

Participants and Collaborators:

Table 5: Active Principal Investigators, faculty, administrators, and Management Team Member					
Individual Name	Email Address	Department	Role in Research		

Tzuyang Yu	Tzuyang_Yu @UML.EDU	Civil and Environmental Engineering	Project principle investigator and Institutional Lead at UML; overseeing all projects and working on radar imaging and interpretation
Susan Faraji	Susan_Faraji @UML.EDU	Civil and Environmental Engineering	Structural analysis and design of bridge girders
Chang Hoon Lee	changhoon.lee@wne.edu	Civil & Environmental Engineering	Task 2: Development of degradation model and design concrete for pull out test specimen.
Moochul Shin	moochul.shin@wne.edu	Civil and Environmental Engineering	Task 2: Data analysis of the pull-out test results.

	Table 6: Student Parti	cipants during	the reporting peri	od
Student Name	Email Address	Class	Major Civil and	Role in research Manufacturing of
		Doctoral	Environmental	laboratory specimens,
Harsh Gandhi			Engineering	laboratory radar imaging
			Civil and	Manufacturing of
Ronan Bates		Senior	Environmental	laboratory specimens,
			Engineering	laboratory radar imaging
			Civil and	Construction of Corrosion
Andrew Masullo		Senior	Environmental	Chamber.
			Engineering	
Commence Comme			Civil and Environmental	Construction of Corrosion Chamber.
Cameron Cox			Environmental Engineering	Chamber.
			Civil and	Construction of Corrosion
Jacob Eberli		Senior	Environmental	Chamber.
		Semor	Engineering	Chamber.
			Civil and	Construction of Corrosion
Tyler Yesu		Junior	Environmental	Chamber.
5			Engineering	
			Civil and	Construction of Corrosion
Daniel Doyle		Junior	Environmental	Chamber.
			Engineering	
Christa Cicerone			Civil and	Construction of Corrosion
Christa Cicerone		Sophomore	Environmental	Chamber.
			Engineering	
			Civil and	Construction of Corrosion
Archer Parker		Sophomore	Environmental	Chamber.
			Engineering	
			Civil and	Construction of Corrosion
Brian LeClair		Sophomore	Environmental	Chamber.
			Engineering	

Table 7: Student Graduates					
Student Name Role in Researc		Degree	Graduation Date		
N/A					

Table 8: Research Project Collaborators during the reporting period							
	Location	Contribution to the Project					
Organization		Financial Support	In-Kind Support	Facilities	Collaborative Research	Personnel Exchanges	
Massachusetts Department of Transportation (MassDOT)	Boston, Massachusetts				Х	Х	
City of Lowell	Lowell, Massachusetts			X	Х	Х	
LeHigh Cement Company	Glen Falls, NY		X				

Changes:

- 1. At UML, our Phase 3 plan has been carried out with extra caution. The UML is gradually opening campus to increase population density on campus. But our students are still vulnerable to the covid-19 pandemic. Some student was inflected by his roommates at home and had to stay home for a two-week quarantine.
- 2. Due to the COVID-19, the university's administrative procedures (e.g., procurement, hiring students) become slow.

Planned Activities:

• The UML team will perform field inspection of corroded concrete structures on selected bridges in Massachusetts in the next reporting period.

Task 2: (Meso-to-Macro Level) Development of Macro-Scale Mechanical Damage Model due to corrosion Task 3. (System Level) Development of capacity reduction model for PC bridges due to corrosion