

Quarterly Progress Report:

Project Number and Title: C3.2018: Condition Assessment of Corroded Prestressed Concrete Bridge Girders
Research Area: Thrust 1: Transportation infrastructure monitoring and assessment for enhanced life
PI: Tzuyang Yu (UMass Lowell)
Co-PI(s): Susan Faraji (UMass Lowell), ChangHoon Lee (WNEU), Moochul Shin (WNEU)
Reporting Period: 01/01/2020 ~ 03/31/2020
Submission Date: 03/31/2020

Overview:

The objective of this project is to assess the condition of corroded prestressed concrete (PC) bridge girders in New England by performing multiplysical field inspection and developing an integrated assessment framework. Table 1 provides our progress on research tasks. Table 2 reports out budget progress. Table 4 lists two publications developed from the research finding in this project.

Table 1: Task Progress						
Task NumberStart DateEnd DatePercent Complete						
Task 1	3/1/19	9/31/19	100%			
Task 2	9/1/19	2/28/20	80%			
Task 3	10/1/19	3/31/20	50%			

Table 2: Budget Progress					
Entire Project Budget Spend Amount Spend Percentage to Date					
\$89,403 (UML)	\$69,734.34 (UML)	78%			
\$85,000 (WNEU)	\$62,609.10 (WNEU)	73.5%			

Table 3: Presentations at Conferences, Workshops, Seminars, and Other Events						
TitleEventTypeLocationDate(s)						
N/A						

	Table 4: Publications and Submitted Papers and Reports						
Туре	Title	Citation	Date	Status			
Peer- reviewed journal	Subsurface characterization of moisture content and the water-to-cement ratio of concrete specimens using synthetic aperture radar imaging	A.Alzeyadi, T. Yu, Journal of Applied Remote Sensing	03/27/2020	Accepted, under revision			
Peer- reviewed journal	Interrelation of Morphological Indices and 2-D Generalized Regularity for Coarse Aggregate in Cement-Based Materials	<u>C. H. Lee</u> , S. J. Lee, <u>M. Shin</u> , and S. Bhattacharya, "Interrelation of Morphological Indices and 2-D Generalized Regularity for Coarse Aggregate in Cement-Based Materials," Construction and Building Materials, 2019	12/31/2019	2nd Review			

Table 5 lists the six reinforced concrete (RC) cylinders used in this project. Table 6 provides the initial current measurements in each articial corrosion test. Figure 1 shows the experimental relationship between initial current and the corrosion time for three RC cylinders, as well as time-dependent current measurements for specimens RC2 and RC3. Figure 2 shows the modeling of average current measurement from specimns RC2 and RC3. We also monitored the environmental condition (e.g., temperature and pH value) inside the corrosion reactor during the course of each artificial corrosion test. Figure 3 compares the pH value and temerature measurements for specimns RC3 and RC4. Our pull-out test apprratus and result are shown in Figures 4 and 5, respectively.

Transportation Infrastructure Durability Center

Table 5: List of reinforced concrete cylinders

Specimen	Corrosion level (%)	Note		
RC0	0	Reference specimen		
RC2	100	Corroded until the formation of a major cracked; current, temperatu and pH values were recorded during artificial corrosion.		
RC3	100			
RC4	50			
RC5	75	Corroded for a given duration; current, temperature, and pH values were recorded during artificial corrosion.		
RC6	25			

Table 6: Initial current measurement with time to be corroded of RC cylinders

Specimen	Initial current, I _{init} (A)	Time, <i>t_{corr}</i> to be 100% corroded (hr)	Corrosion level (%)
RC2	0.3020	20.12	100
RC3	0.3440	13	100
RC4	0.3360	14.1504	50
RC5	0.4210	5.18	75

(a) Initial current vs. minimum corrosion time (b) Current measurements for specimens RC2 and RC3 Figure 1.

Figure 3: Comparison between the pH value and temperature measurements of specimens RC3 and RC4

Figure 4: Pull-Out UHPC specimens with un-corroded bar.

Figure 5: Pull-out force and displacement response

Table 7: Acti	Table 7: Active Principal Investigators, faculty, administrators, and Management Team Members						
Individual Name	Email Address	Department	Role in Research				
Tzuyang Yu	Tzuyang_Yu @UML.EDU	Civil and Environmental Engineering	Project principle investigator and Institutional Lead at UML; overseeing all projects and working on radar imaging and interpretation				
Susan Faraji	Susan_Faraji @UML.EDU	Civil and Environmental Engineering	Structural analysis and design of bridge girders				
Chang Hoon Lee	Changhoon.Lee @WNE.EDU	Civil and Environmental Engineering	Development of degradation model and design concrete for pull out test specimen (Task 2)				
Moochul Shin	Moochul.Shin @WNE.EDU	Civil and Environmental Engineering	Data analysis of the pull-out test results (Task 2)				

Participants	and	Collaborators:
i ai cicipantos		Contabolatorsi

Table 8: Student Participants during the reporting period					
Student Name	Email Address	Class	Major	Role in research	
Ahmed Alzeyadi		Ph.D.	Civil and Environmental Engineering	Design and manufacturing of laboratory specimens, field radar imaging of structures, data analysis and signal processing	
Sanjana Vinayaka		Ph.D.	Civil and Environmental Engineering	Manufacturing of laboratory specimens, field radar imaging of structures, data analysis and signal processing	

		Civil and	Manufacturing of laboratory
Jade Man	Sophomore	Environmental	specimens
		Engineering	
		Civil and	Manufacturing of laboratory
Ronan Bates	Junior	Environmental	specimens, laboratory radar imaging
		Engineering	
Calab Tourtalatta	Sonior	Civil	Specimen manufacturing
Caleb Tourtelotte	Semor	Engineering	
Nicholas Dontorno	Junior	Civil	Specimen manufacturing
Nicholas Falitorilo	Junior	Engineering	
Comoron Cox	Junior	Civil	Specimen manufacturing
Cameron Cox	Juilloi	Engineering	
Androw Magulla	Junior	Civil	Specimen manufacturing
	Junor	Engineering	

Table 9: Student Graduates					
Student Name	Role in Research	Degree	Graduation Date		
N/A					

Table 10: Research Project Collaborators during the reporting period						
		Contribution to the Project				
Organization	Location	Financial Support	In-Kind Support	Facilities	Collaborative Research	Personnel Exchanges
Massachusetts Department of Transportation (MassDOT)	Boston, Massachusetts				Х	Х
City of Lowell	Lowell, Massachusetts			X	Х	Х

Changes:

The recent rapid development of coronavirus and consequent restrictions from the Massachusetts State government and the University regarding group meetings and laboratory access on campus, we have to develop various approaches to continue conducting research with restricted access to our research facilities. Task 2 has been delayed due to the outbreak of coronavirus in Massachusetts. Nonetheless, we will complete Task 2. We have identified two approaches in the following:

- Hold daily research meetings via teleconference calls We have been holding research meetings on Zoom since March 16, 2020 and been making progress via teleconferencing.
- 2) Transition to numerical simulation We are also in the process of setting up a server on campus to allow research assistants to remotely conduct simulation-related and data processing research tasks on the project.

We will also monitor this rapidly developing situation on coronavirus in Massachusetts and accommodate restrictions and regulations while continuing our research work on the project.

Planned Activities:

In the next reporting period, we plan to continue working on following tasks.

Task 2: (Meso-to-Macro Level) Development of Macro-Scale Mechanical Damage Model due to corrosion (WNEU: C.Lee and M. Shin)

Task 3. (System Level) Development of capacity reduction model for PC bridges due to corrosion (all members)

The WNEU team will continue conducting the pull-out test by collaboration with the UML team.