
Quarterly Progress Report: Project Number and Title: 3.5 Prevention of Stress-Induced Failures of Prestressed Concrete Crossties of the Railroad Track Structure Research Area: New Systems for Longevity and Constructability PI: Moochul Shin and Western New England University Co-PI(s): ChangHoon Lee and Western New England University Reporting Period: 10/1/2020~12/31/2020 Submission Date: 12/31/2020

Overview: (Please answer each question individually)

Due to the COVID-19 pandemic, the research activities have been significantly disrupted. Limited numerical analyses and lab experiments have been conducted. During the reporting period, the WNEU research team has been working on Tasks 2, 3, and 4.

• Upon de-tensioning prestressing wires, the performance of prestressed concrete crosstie models including damaged length, area, and volume due to the compression and tensions were investigated. The numerical simulation results indicate that the damage due to tension is greater than the compression damage. The compression damage tends to be localized nearby each indentation and at the end of the time. Figure 1 shows the damage around the interface between concrete and a prestressing wire.

• The influence of ground granulated blast furnace slag (GGBFS) on the rate of strength development is explored. Particularly, the acceleration of hydration due to GGBFS compromises the impact of Type III cement as demonstrated by Figure 2

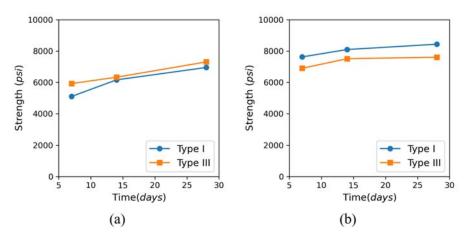


Figure 2. Influence of Ground-Granulated Blast Furnace Slag (GGBFS) interacting with cement types: (a) Specimens without GGBFS, (2) Specimens with GGBFS

• The qualitative durability performance test for an engineered cementitious material (ECM) was performed via the accelerated corrosion chamber test shown in Figure 3. The ECM cylinder survived after 48 hours in the chamber, while the regular concrete cylinder was completely damaged by the corrosion damage. The combination of dense microstructure (i.e., lower diffusivity) and the improved tensile strength prevented splitting failure induced by expansion of corrosion products.

Figure 3. Accelerated corrosion test results: (a) ECM cylinder and (b) regular concrete cylinder

Table 1: Task Progress				
Task Number	Start Date	End Date	% Complete	
Task 1: 3D FE Models	09/01/2018	12/30/2020	99 %	
Task 2: 3D FE Models on HPC	03/01/2019	3/30/2021	90 %	
Task 3: Crosstie Models	06/01/2020	09/30/2021	40 %	
Task 4: Introduction ofEngineered CementitiousMaterials	12/01/2018	05/30/2021	75 %	
Overall Project:	09/01/2018	09/30/2021	65%	

Table 2: Budget Progress				
Project Budget	Spend – Project to Date	% Project to Date*		
\$385,000	\$236,645.17 to 11/30/2020	61.5 % to 11/30/2020		

*Include the date the budget is current to.

Table 3: Presentations at Conferences, Workshops, Seminars, and Other Events					
Title	TitleEventTypeLocationDate(s)				
n/a					

Table 4: Publications and Submitted Papers and Reports					
Туре	Type Title Citation Date Status				
n/a					

<u>Participants and Collaborators:</u>

Table 5: Active Principal Investigators, faculty, administrators, and Management Team Members					
Individual Name	Email Address	Department	Role in Research		
		Civil and	Leading Tasks 1, 2, and 3		
Moochul Shin	moochul.shin@wne.edu	Environmental			
	_	Engineering			
		Civil &	Leading Task 4.		
Chang Hoon Lee	changhoon.lee@wne.edu	Environmental	_		
_		Engineering			

Table 6: Student Participants during the reporting period				
Student Name	Email Address	Class	Major	Role in research
Georgii Tifaniuk		Junior	Civil Engineering	Experimental Testing
Cameron Cox		Senior	Civil Engineering	Experimental Testing
Andrew Masullo		Senior	Civil Engineering	Experimental Testing
Jacob Eberli		Senior	Civil Engineering	Experimental Testing

Table 7: Student Graduates					
Student Name	Degree	Graduation Date			
Nicolas Pantorno	Concrete mixing and testing	Civil Engineering	12.21.2020		

Table 8: Research Project Collaborators during the reporting period									
		Contribution to the Project				Contribution to the Project			
Organization	Location	Financial	In-Kind	Facilities	Collaborative	Personnel			
		Support	Support		Research	Exchanges			
National Center for									
Supercomputing	Urbana, IL		Х						
Applications									
Texas Advanced	Austin TV								
Computing Center	Austin, TX			Х					

The in-house parallel algorithm code was mainly developed by Dr. Kwack (currently at Argonne National Laboratory) when he was a staff member of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993) and the State of Illinois. In addition, this work partially used the XSEDE resource – Stampede2-TACC through allocation #MSS180002.

Table 9: Other Collaborators				
Collaborator Name and	Contact Information	Organization and	Contribution to	
Title	Contact Information	Department	Research	

JaeHyuk Kwack	jkwack@anl.gov	National Center for Supercomputing Applications (currently at Argonne National Laboratory)	Technical support and advice for high performance computing
Hailing Yu	Hailing_yu@yahoo.com	Volpe Center (currently at STV)	Technical champion

Who is the Technical Champion for this project? Name: Hailing Yu Title: Mechanical Engineer (Engineering Specialist) Organization: Volpe center (currently at STV) Location (City & State): Cambridge, MA (Boston, MA) Email Address: hailing.yu@dot.gov (hailing_yu@yahoo.com)

Changes:

The concrete lab has been temporarily closed during the winter break, and the research team is expecting to reopen the lab when the 2021 spring semester begins. A 3~6 month delay is expected.

WNEU is expected to hold most of the classes on-ground (face-to face) for 2021 Spring. In order for the campus to remain open, everyone has to follow the COVID safety and health guidelines such as face covering, social distancing, etc.

Abdoulaye Diallo, who just graduated with the master's degree in Civil Engineering has been working for the project as a temporary post-graduate researcher since June, 2020.

Nicholas Pantorno in Civil Engineering has just graduated.

Jacob Eberli, senior in Civil Engineering has just joined the research team.

Planned Activities:

1. Large-scale prestressed concrete crosstie models will be further developed with multiple wires in order to investigate the overall responses using the HPC.

2. The research team will be monitoring the safety guidelines of the lab environments.

3. The research team will continue developing ECM for the railroad crossties. The use of high volume paste can be a potential risk for shrinkage crack despite denser microstructure. The research team investigates the performance of concrete with respect to combinations of the paste volume and the size distribution of aggregates.