

Quarterly Progress Report:

Project Number and Title: 3.5 Prevention of Stress-Induced Failures of Prestressed Concrete Crossties of the Railroad Track Structure Research Area: New Systems for Longevity and Constructability PI: Moochul Shin and Western New England University Co-PI(s): ChangHoon Lee and Western New England University Reporting Period: 7/1/2020~9/30/2020 Submission Date: 9/30/2020

Overview: (Please answer each question individually)

Due to the COVID-19 pandemic, the research activities have been significantly disrupted. Limited numerical analyses were performed. In this period, the WNEU research team has been working on Tasks 2 and 3.

- A real-size 3D prestressed concrete crosstie (PSCCT) model has been built with three different wires: 1) smooth wires, 2) shallow-indented chevron pattern wires, and 3) deeper-indented chevron pattern wires (see Fig.1). The research team was able to simulate the numerical model with up to 46.7 million of the degrees of freedom by using 1000 cores. Fig. 1 shows the maximum principal stress contour on the concrete surrounding a wire after detensioning the prestressing wires.
- The simulation results indicated that the maximum principal stress of the deeper-indented chevron pattern wires is 42.9 % than the shallow-indented chevron pattern wire. The depth of the indentation of the deeper indentation is approximately twice as deep as that of the shallow indentation. In addition, the sidewall angle of the deeper indentation is approximately twice as steep as that of the shallow indentation. Higher stress concentration was found at the first indentation where the indentation ends.
- By investigating the change of the stress along the longitudinal line of the wire, the location of the indentation can be identified (see Fig.2).

(a) Smooth wire

(b) Shallow indentation (c) Deeper indentation Figure 1. Maximum principal stress contour on the concrete surrounding (a) smooth wire, (b) shallow indentation wire, and (c) deeper indentation wire.

Position from the free end along the longitudinal line(in)

Fig.2 The minimum principal stress distribution along the longitudinal line of a wire

Table 1: Task Progress					
Task Number	Start Date	End Date	% Complete		
Task 1: 3D FE Models	09/01/2018	12/30/2019	90 %		
Task 2: 3D FE Models on HPC	03/01/2019	12/30/2020	80 %		
Task 3: Crosstie Models	06/01/2020	09/30/2021	20 %		
Task 4: Introduction of Engineered Cementitious Materials	12/01/2018	05/30/2021	65 %		
Overall Project:	09/01/2018	09/30/2021	60%		

Table 2: Budget Progress				
Project Budget	Spend – Project to Date	% Project to Date*		
\$385,000	\$203,645.97 to 8/31/2020	53.0 % to 8/31/2020		

*Include the date the budget is current to.

Table 3: Presentations at Conferences, Workshops, Seminars, and Other Events				
Title	Event	Туре	Location	Date(s)
n/a				

Table 4: Publications and Submitted Papers and Reports						
Туре	Title	Citation	Date	Status		
Peer- reviewed journal	Interrelation of Morphological Indices and 2-D Generalized Regularity for Coarse Aggregate in Cement- Based Materials	<u>C. H. Lee</u> , S. J. Lee, <u>M. Shin</u> , and S. Bhattacharya, (2020) "Interrelation of Morphological Indices and 2- D Generalized Regularity for Coarse Aggregate in Cement- Based Materials," <i>Construction and Building</i> <i>Materials</i> , 251, 118984	8/10/2020	Published		

Participants and Collaborators:

Table 5: Active Principal Investigators, faculty, administrators, and Management Team Members					
Individual Name	Email Address	Department	Role in Research		
		Civil and	Leading Tasks 1, 2, and 3		
Moochul Shin	moochul.shin@wne.edu	Environmental			
		Engineering			
		Civil &	Leading Task 4.		
Chang Hoon Lee	changhoon.lee@wne.edu	Environmental			
		Engineering			

Table 6: Student Participants during the reporting period				
Student Name	Email Address	Class	Major	Role in research
Georgii Tifaniuk		Junior	Civil Engineering	Experimental Testing

Table 7: Student Graduates					
Student Name	Student Name Role in Research		Graduation Date		
Abdoulaye Diallo	Numerical analysis	Master in Civil Engineering	5.17.2020		
Caleb Tourtelotte	Specimen manufacture	Bachelor of Science in Civil Engineering	5.16.2020		
Matthew Colonna	Fracture Testing preparation	Bachelor of Science in Civil Engineering	5.16.2020		

Table 8: Research Project Collaborators during the reporting period						
		Contribution to the Project				
Organization	Location	Financial	In-Kind	Facilities	Collaborative	Personnel
		Support	Support	racinties	Research	Exchanges
National Center for						
Supercomputing	Urbana, IL		Х			
Applications						
Texas Advanced	Austin TV			v		
Computing Center	Austin, 1A			Х		

The in-house parallel algorithm code was mainly developed by Dr. Kwack (currently at Argonne National Laboratory) when he was a staff member of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993) and the State of Illinois. In addition, this work partially used the XSEDE resource – Stampede2-TACC through allocation #MSS180002.

Table 9: Other Collaborators				
Collaborator Name and	Contact Information	Organization and	Contribution to	
litie		Department	Research	

	National Center for	Technical support and
	Supercomputing	advice for high
JaeHyuk Kwack	Applications (currently	at performance computing
	Argonne National	
	Laboratory)	
Hailing Vu	Volpe Center (currently	Technical champion
	at STV)	

Who is the Technical Champion for this project? Name: Hailing Yu Title: Mechanical Engineer (Engineering Specialist) Organization: Volpe center (currently at STV) Location (City & State): Cambridge, MA (Boston, MA) Email Address: hailing.yu@dot.gov (hailing_yu@yahoo.com)

Changes:

Due to the COVID-19 pandemic, the research lab has been completely closed. Limited numerical analyses have been performed remotely.

WNEU is holding most of the classes on-ground (face-to face) for 2020 fall. In order for the campus to remain open, everyone has to follow the COVID safety and health guidelines such as face covering, social distancing, etc. The research team has opened the Concrete lab for the research activities. However, there are many challenges while following safety and health guidelines. A 3~6 month delay is expected.

Abdoulaye Diallo, who just graduated with the master's degree in Civil Engineering has been hired as a temporary postgraduate researcher since June.

Georgii Tifaniuk, a junior undergraduate student in Civil Engineering has just joined the research team.

The project for utilizing high-performance computing (HPC) resource through Stampede2-TACC (#MSS180002) has been extended to 3/31/2021.

Planned Activities:

1. Large-scale prestressed concrete crosstie models will be further developed with multiple wires in order to investigate the overall responses using the HPC.

2. The research team keeps monitoring the safety of the lab environments.

3. The research team will continue developing UHPC for the railroad crossties. Instead of recycled aggregates, the team will test granite (quartz-oriented) and basalt aggregates (silica-oriented).