Quarterly Progress Report: Project Number and Title: Project 2.4 - Thermoplastic Composites by 3D Printing and Automated Manufacturing to Extend the Life of Transportation Facilities Research Area: 2 - New Materials for Longevity and Constructability PI: Roberto Lopez-Anido, University of Maine Co-PI(s): James Anderson, Douglas Gardner and Yousoo Han, University of Maine **Reporting Period:** 10/01/2019 to 31/12/2019 **Submission Date:** *31/12/2019* ## Overview: (Please answer each question individually) Provide **BRIEF** overview and summary of activities performed during the reporting period. This summary should be written in lay terms for a general audience to understand. This should not be an extensive write up of findings (those are to be included in the final report), but a high-level overview of the activities conducted during the last three months.... Organized a teleconference with PCI-NE regarding use of 3D printed forms in transportation infrastructures. Organized a meeting regarding the use of 3D printed formwork for precast concrete. Attendees of the meeting were concrete precasters, cement manufacturers, PCI-NE, and MaineDOT. Discussed several challenges and opportunities regarding use of 3D printed bio-based forms for casting precast concrete. As a follow-up of this meeting, American Concrete expressed interest in using 3D printed forms for casting a pier-cap using 3D printed forms. Provide context as to how these activities are helping achieve the overarching goal(s) of the project... These meetings and teleconferences helped us identify bridge pier cap as a suitable demonstration project for 3D printed forms. Describe any accomplishments achieved under the project goals... Complete the following tables to document the work toward each task and budget (add rows/remove rows as needed)... | Table 1: Task Progress | | | | | | | | | |--|--|--|--|--|--|--|--|--| | Task Number Start Date End Date Percent Complete | | | | | | | | | | Task 1: | | | | | | | | | | Task 2: | | | | | | | | | | Task 3: | | | | | | | | | | Task 4: | | | | | | | | | | Table 2: Budget Progress | | | | | | |---|----------|--|--|--|--| | Entire Project Budget Spend Amount Spend Percentage to Date | | | | | | | | \$54,936 | | | | | | | | | | | | Describe any opportunities for training/professional development that have been provided... Attended PCI CEU course webinar on 3D printed forms for use in architectural precast concrete. Describe any activities involving the dissemination of research results (be sure to include outputs, outcomes, and the ways in which the outcomes/outputs have had an impact during the reporting period. Please use the tables below for any Publications and Presentations in addition to the description of any other technology transfer efforts that took place during the reporting period.)... Use the tables below to complete information about conferences, workshops, publications, etc. List all other outputs, outcomes, and impacts after the tables (i.e. patent applications, technologies, techniques, licenses issued, and/or website addresses used to disseminate research findings). Rev: 11.14.2019 | Table 3: Presentations at Conferences, Workshops, Seminars, and Other Events | | | | | | | |--|---|--|--|--|--|--| | Title | tle Event Type Location Date(s) | | | | | | | Presentation title | Name of event (i.e.
TIDC 1 st Annual
Conference) | i.e. Conference,
Symposium,
Seminar, | | | | | | | | | | | | | | | Table 4: Publications and Submitted Papers and Reports | | | | | | | |------------------------------|---|--|---------------|----------|--|--|--| | Type Title | | Citation | Date | Status | | | | | Peer-
reviewed
journal | Enhancing the interlayer
tensile strength of 3D
printed short carbon fiber
reinforced PETG and PLA
composites via annealing | Bhandari, S., Lopez-Anido, R.A. and Gardner, D.J., 2019. Enhancing the interlayer tensile strength of 3D printed short carbon fiber reinforced PETG and PLA composites via annealing. Additive Manufacturing, 30, p.100922. | November 2019 | Accepted | | | | | Peer-
reviewed
journal | Elasto-Plastic Finite Element Modeling of Short Carbon Fiber Reinforced 3D Printed Acrylonitrile Butadiene Styrene Composites | Bhandari, S., Lopez-Anido,
R.A., Wang, L. and Gardner,
D.J., 2020. Elasto-Plastic
Finite Element Modeling of
Short Carbon Fiber Reinforced
3D Printed Acrylonitrile
Butadiene Styrene
Composites. JOM, 72(1), 475-
484 | November 2019 | Accepted | | | | Fig: Conceptual model of an assembled five-part formwork Use the table below to list all individuals who have worked on the project. | Table 5: Active Principal Investigators, faculty, administrators, and Management Team Members | | | | | | |---|----------------------------|----------------|------------------|--|--| | Individual Name | Email Address | Department | Role in Research | | | | Roberto Lopez- | nla@mina.adv | Civil | P.I. | | | | Anido | <u>rla@mine.edu</u> | Engineering | | | | | | | School of | Co P.I. | | | | Douglas Gardner | douglasg@maine.edu | Forest | | | | | | | Resources | | | | | | | Advanced | Co PI | | | | James Anderson | James.m.anderson@maine.edu | Structures and | | | | | James Anderson | | Composites | | | | | | | Center | | | | | | | Advanced | Co PI | | | | Yoshoo Han | Yoshoo.han@maine.edu | Structures and | | | | | 1 OSHOO TTAII | | Composites | | | | | | | Center | | | | | | James.bryce@maine.edu | Advanced | | | | | Iomas Priva | | Structures and | | | | | James Bryce | | Composites | | | | | | | Center | | | | Use the table below to list all students who have participated in the project. | Table 6: Student Participants during the reporting period | | | | | | |---|----------------------|--------|-------------------|------------------------|--| | Student Name | Email Address | Class | Major | Role in research | | | | | | Civil Engineering | Carry out analysis and | | | | | | | design of 3D printed | | | Sunil Bhandari | | Ph.D. | | formwork. Evaluate | | | | | | | different 3D printed | | | | | | | surfaces. | | | | | | Civil Engineering | Create drawings and | | | Anthony Salafia | | Junior | | dimensions for 3D | | | | | | | printed formwork. | | Use the table below to list any students who worked on this project and graduated during this reporting period. | Table 7: Student Graduates | | | | | | |--|--|--|--|--|--| | Student Name Role in Research Degree Graduation Date | Use the table below to list organizations have been involved as partners on this project and their contribution to the project. Table 8: Research Project Collaborators during the reporting period | | | Contribution to the Project | | | | | |-------------------|-------------------|-----------------------------|--------------------|------------|---------------------------|------------------------| | Organization | Location | Financial
Support | In-Kind
Support | Facilities | Collaborative
Research | Personnel
Exchanges | | American Concrete | Auburn,
Maine | X | | X | X | | | MaineDOT | Augusta,
Maine | | | | X | | | PCI-NE | | | | | X | | | ORNL | Tennessee | X | | | X | | List all other outputs, outcomes, and impacts here (i.e. patent applications, technologies, techniques, licenses issued, and/or website addresses used to disseminate research findings). Please be sure to provide detailed information about each item as with the tables above. Have other collaborators or contacts been involved? If so, who and how? (This would include collaborations with others within the lead or partner universities; especially interdepartmental or interdisciplinary collaborations. ## **Changes:** We changed the demonstration project to bridge pier cap. American Concrete approached us with the idea of testing large-scale bio-based 3D printed forms for a bridge pier cap for the bridge on Ohio Street, Bangor, Maine. ## **Planned Activities:** We will design and 3D print a formwork for casting a pier cap. The design involves geometric design with locking and aligning mechanism, selection of suitable bio-based material, and stress analysis of the formwork to ensure stiffness and strength required for concrete casting. Rev: 11.14.2019